unendlich viele Lösungen - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Worksheeps.de - unendlich viele Matheaufgaben und -Lösungen
Die Webseite bietet die Möglichkeit sich selbst Übungsblätter/Übungsaufgaben mit Lösungen zu verschiedensten Themen aus dem Bereich Mathematik zu erstellen
LGS lösen: unendlich viele Lösungen mit Gauß-Verfahren | M.02.02
Um die Lösung eines LGS zu erhalten, wendet man natürlich das Gauß-Verfahren an. Wenn man bei einem Gleichungssystem weniger Gleichungen als Unbekannte hat oder eine Nullzeile erhält, erhält man (meist) „unendlich viele Lösungen“ (auch „mehrdeutige Lösung“ genannt). Man wählt nun für eine der Unbekannten „t“ (oder einen anderen Parameter) und bestimmt nun alle ...
LGS lösen: unendlich viele Lösungen mit Gauß-Verfahren, Beispiel 1 | M.02.02
Um die Lösung eines LGS zu erhalten, wendet man natürlich das Gauß-Verfahren an. Wenn man bei einem Gleichungssystem weniger Gleichungen als Unbekannte hat oder eine Nullzeile erhält, erhält man (meist) „unendlich viele Lösungen“ (auch „mehrdeutige Lösung“ genannt). Man wählt nun für eine der Unbekannten „t“ (oder einen anderen Parameter) und bestimmt nun alle ...
LGS lösen: unendlich viele Lösungen mit Gauß-Verfahren, Beispiel 2 | M.02.02
Um die Lösung eines LGS zu erhalten, wendet man natürlich das Gauß-Verfahren an. Wenn man bei einem Gleichungssystem weniger Gleichungen als Unbekannte hat oder eine Nullzeile erhält, erhält man (meist) „unendlich viele Lösungen“ (auch „mehrdeutige Lösung“ genannt). Man wählt nun für eine der Unbekannten „t“ (oder einen anderen Parameter) und bestimmt nun alle ...
Matrix lösen: unendlich viele Lösung mit Gauß-Verfahren | M.02.05
Um die Lösung einer Matrix zu erhalten, wendet man natürlich das Gauß-Verfahren an. Wenn man bei einem Gleichungssystem weniger Gleichungen als Unbekannte hat (es also zwei oder noch weniger Zeilen gibt wie Spalten) oder man in der Diagonale eine Null erhält, erhält man (meist) „unendlich viele Lösungen“ (auch „mehrdeutige Lösung“ genannt). Man wählt nun für eine ...
Matrix lösen: unendlich viele Lösung mit Gauß-Verfahren, Beispiel 2 | M.02.05
Um die Lösung einer Matrix zu erhalten, wendet man natürlich das Gauß-Verfahren an. Wenn man bei einem Gleichungssystem weniger Gleichungen als Unbekannte hat (es also zwei oder noch weniger Zeilen gibt wie Spalten) oder man in der Diagonale eine Null erhält, erhält man (meist) „unendlich viele Lösungen“ (auch „mehrdeutige Lösung“ genannt). Man wählt nun für eine ...
Matrix lösen: unendlich viele Lösung mit Gauß-Verfahren, Beispiel 1 | M.02.05
Um die Lösung einer Matrix zu erhalten, wendet man natürlich das Gauß-Verfahren an. Wenn man bei einem Gleichungssystem weniger Gleichungen als Unbekannte hat (es also zwei oder noch weniger Zeilen gibt wie Spalten) oder man in der Diagonale eine Null erhält, erhält man (meist) „unendlich viele Lösungen“ (auch „mehrdeutige Lösung“ genannt). Man wählt nun für eine ...
Gleichungssysteme mit Sonderfällen: /keine Lösung/ oder /unendlich viele Lösungen/ Beispiel 1 | G.02.06
Bei einem Gleichungssystem gibt es zwei Sonderfälle: Entweder „keine Lösung“ oder „unendlich viele Lösung“. Den Fall „keine Lösung“ erhält man, wenn man beim Verrechnen der beiden Gleichungen auf einen Widerspruch stößt (1=0 oder 3=7 oder ). Den Fall „unendlich viele Lösung“ erhält man, wenn man beim Verrechnen der beiden Gleichungen auf eine wahre Aussage ...
Gleichungssysteme mit Sonderfällen: /keine Lösung/ oder /unendlich viele Lösungen/ | G.02.06
Bei einem Gleichungssystem gibt es zwei Sonderfälle: Entweder „keine Lösung“ oder „unendlich viele Lösung“. Den Fall „keine Lösung“ erhält man, wenn man beim Verrechnen der beiden Gleichungen auf einen Widerspruch stößt (1=0 oder 3=7 oder ). Den Fall „unendlich viele Lösung“ erhält man, wenn man beim Verrechnen der beiden Gleichungen auf eine wahre Aussage ...
Gleichungssysteme mit Sonderfällen: /keine Lösung/ oder /unendlich viele Lösungen/ Beispiel 2 | G.02.06
Bei einem Gleichungssystem gibt es zwei Sonderfälle: Entweder „keine Lösung“ oder „unendlich viele Lösung“. Den Fall „keine Lösung“ erhält man, wenn man beim Verrechnen der beiden Gleichungen auf einen Widerspruch stößt (1=0 oder 3=7 oder ). Den Fall „unendlich viele Lösung“ erhält man, wenn man beim Verrechnen der beiden Gleichungen auf eine wahre Aussage ...