Linearfaktorzerlegung - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen
Linearfaktorzerlegung: kurze Einführung | B.05
Eine Linearfaktorzerlegung bedeutet, dass man eine Funktion so umschreibt, dass sie nur noch aus Klammern besteht, welche mit Mal verbunden sind. Innerhalb der Klammern darf das x keine Hochzahl haben. Z.B. schreibt man x²+6x+5 als Linearfaktorzerlegung um in: (x+5)(x+1). Die einfache Linearfaktorzerlegung geht über Ausklammern oder binomische Formeln, wenn´s etwas ...
Linearfaktorzerlegung: so einfach geht's, Beispiel 1 | B.05.01
Wenn man Glück hat, lässt sich aus der Funktion so viel ausklammern, dass in der Klammer nur Zahlen übrig sind und ein x ohne Hochzahl. In der Klammer steht demnach ein linearer Term. Vielleicht kann man auch eine binomische Formel anwenden. (Ist hilfreich, wenn man sie kann). Schwuppdiwupp ist die Linearfaktorzerlegung fertig.
Linearfaktorzerlegung: so einfach geht's, Beispiel 4 | B.05.01
Wenn man Glück hat, lässt sich aus der Funktion so viel ausklammern, dass in der Klammer nur Zahlen übrig sind und ein x ohne Hochzahl. In der Klammer steht demnach ein linearer Term. Vielleicht kann man auch eine binomische Formel anwenden. (Ist hilfreich, wenn man sie kann). Schwuppdiwupp ist die Linearfaktorzerlegung fertig.
Linearfaktorzerlegung: so einfach geht's | B.05.01
Wenn man Glück hat, lässt sich aus der Funktion so viel ausklammern, dass in der Klammer nur Zahlen übrig sind und ein x ohne Hochzahl. In der Klammer steht demnach ein linearer Term. Vielleicht kann man auch eine binomische Formel anwenden. (Ist hilfreich, wenn man sie kann). Schwuppdiwupp ist die Linearfaktorzerlegung fertig.
Linearfaktorzerlegung: so einfach geht's, Beispiel 3 | B.05.01
Wenn man Glück hat, lässt sich aus der Funktion so viel ausklammern, dass in der Klammer nur Zahlen übrig sind und ein x ohne Hochzahl. In der Klammer steht demnach ein linearer Term. Vielleicht kann man auch eine binomische Formel anwenden. (Ist hilfreich, wenn man sie kann). Schwuppdiwupp ist die Linearfaktorzerlegung fertig.
Linearfaktorzerlegung: so einfach geht's, Beispiel 2 | B.05.01
Wenn man Glück hat, lässt sich aus der Funktion so viel ausklammern, dass in der Klammer nur Zahlen übrig sind und ein x ohne Hochzahl. In der Klammer steht demnach ein linearer Term. Vielleicht kann man auch eine binomische Formel anwenden. (Ist hilfreich, wenn man sie kann). Schwuppdiwupp ist die Linearfaktorzerlegung fertig.
Linearfaktorzerlegung | A.46.03
Linearfaktoren sind Klammern, die mit mal verbunden sind. In den Klammern darf x keine Hochzahl haben. Braucht man von einer Funktion in Linearfaktorzerlegung, hat die Funktion die Form: f(x)=a·(x-x1)·(x-x2)·(x-x3)·.... x1, x2, x3, sind hierbei die Nullstellen der Funktion. Fazit: Man braucht die Nullstellen einer Funktion, dann kann man die Linearfaktorzerlegung ...
Linearfaktorzerlegung, Beispiel 3 | A.46.03
Linearfaktoren sind Klammern, die mit mal verbunden sind. In den Klammern darf x keine Hochzahl haben. Braucht man von einer Funktion in Linearfaktorzerlegung, hat die Funktion die Form: f(x)=a·(x-x1)·(x-x2)·(x-x3)·.... x1, x2, x3, sind hierbei die Nullstellen der Funktion. Fazit: Man braucht die Nullstellen einer Funktion, dann kann man die Linearfaktorzerlegung ...
Linearfaktorzerlegung, Beispiel 4 | A.46.03
Linearfaktoren sind Klammern, die mit mal verbunden sind. In den Klammern darf x keine Hochzahl haben. Braucht man von einer Funktion in Linearfaktorzerlegung, hat die Funktion die Form: f(x)=a·(x-x1)·(x-x2)·(x-x3)·.... x1, x2, x3, sind hierbei die Nullstellen der Funktion. Fazit: Man braucht die Nullstellen einer Funktion, dann kann man die Linearfaktorzerlegung ...
Linearfaktorzerlegung, Beispiel 1 | A.46.03
Linearfaktoren sind Klammern, die mit mal verbunden sind. In den Klammern darf x keine Hochzahl haben. Braucht man von einer Funktion in Linearfaktorzerlegung, hat die Funktion die Form: f(x)=a·(x-x1)·(x-x2)·(x-x3)·.... x1, x2, x3, sind hierbei die Nullstellen der Funktion. Fazit: Man braucht die Nullstellen einer Funktion, dann kann man die Linearfaktorzerlegung ...
Quelle
Systematik
- Mathematik (38)
- Mathematisch-Naturwissenschaftliche Fächer (38)
- Grenzwertberechnungen (1)
- Grenzwerte von Funktionen (1)
- Zuordnungen, Funktionen (1)
- Zahlen, Algebra (1)
- Variablen und Terme (1)
Schlagwörter
- Linearfaktorzerlegung (36)
- E-Learning (35)
- Video (35)
- Funktion (Mathematik) (34)
- Nullstelle (25)
- Koordinate (25)
- Analysis (24)