Linearfaktorzerlegung, Beispiel 3 | A.46.03
kostenloses Unterrichtsmaterial online bei Elixier
Linearfaktoren sind Klammern, die mit mal verbunden sind. In den Klammern darf x keine Hochzahl haben. Braucht man von einer Funktion in Linearfaktorzerlegung, hat die Funktion die Form: f(x)=a·(x-x1)·(x-x2)·(x-x3)·.... x1, x2, x3, sind hierbei die Nullstellen der Funktion. Fazit: Man braucht die Nullstellen einer Funktion, dann kann man die Linearfaktorzerlegung schnell aufstellen. (Den Parameter a erhält man zum Schluss recht einfach, in dem man einen beliebigen Punkt einsetzt).