GAUSS-ELIMINATION - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen
Gauß'sches Eliminationsverfahren
Gaußsches Eliminationsverfahren. Theoretische Grundlagen und programmierte Realisierung. Facharbeit von Florian Michahelles, Abiturjahrgang 1992/1994, Werner-von-Siemens-Gymnasium Weißenburg/Bay. .Diese Facharbeit behandelt drei Verfahren zur Lösung linearer Gleichungssysteme. Im ersten werden zunächst die theoretischen Grundlagen der Verfahren dargelegt, im zweiten Teil ...
Matrix lösen: keine Lösung, unlösbar, Widerspruch; Beispiel 2 | M.02.06
Der schönste Fall in Mathe ist immer der Widerspruch (so was wie 0=1). Stößt man auf so einen, ist man immer fertig und weiß, dass es keine Lösung gibt. Das ist bei einem Gleichungssystem nicht anders. Wenn man während des Gauß-Verfahrens auf einen Widerspruch stößt kann man getrost aufhören. Die Matrix ist unlösbar.
Matrix lösen: keine Lösung, unlösbar, Widerspruch; Beispiel 1 | M.02.06
Der schönste Fall in Mathe ist immer der Widerspruch (so was wie 0=1). Stößt man auf so einen, ist man immer fertig und weiß, dass es keine Lösung gibt. Das ist bei einem Gleichungssystem nicht anders. Wenn man während des Gauß-Verfahrens auf einen Widerspruch stößt kann man getrost aufhören. Die Matrix ist unlösbar.
LGS lösen: keine Lösung, unlösbar, Widerspruch; Beispiel 1 | M.02.03
Der schönste Fall in Mathe ist immer der Widerspruch (so was wie 0=1). Stößt man auf so einen, ist man immer fertig und weiß, dass es keine Lösung gibt. Das ist bei einem Gleichungssystem nicht anders. Wenn man während des Gauß-Verfahrens auf einen Widerspruch stößt kann man getrost aufhören. Das LGS ist unlösbar.
LGS lösen: keine Lösung, unlösbar, Widerspruch | M.02.03
Der schönste Fall in Mathe ist immer der Widerspruch (so was wie 0=1). Stößt man auf so einen, ist man immer fertig und weiß, dass es keine Lösung gibt. Das ist bei einem Gleichungssystem nicht anders. Wenn man während des Gauß-Verfahrens auf einen Widerspruch stößt kann man getrost aufhören. Das LGS ist unlösbar.
Gauß-Verfahren: Lineares Gleichungssystem lösen | M.02
Das gängigste Lösungsverfahren für ein Lineares Gleichungssystem ist das Gauß-Verfahren. Dafür stellt man sich die Diagonale des LGS vor und multipliziert und verrechnet nun die Gleichungen derart, dass man unter der Diagonalen nur noch Nullen hat. Nun kann man die Lösungen von x1, x2, x3, .. bestimmen, welche zusammen den Lösungsvektor ...
LGS lösen: keine Lösung, unlösbar, Widerspruch; Beispiel 2 | M.02.03
Der schönste Fall in Mathe ist immer der Widerspruch (so was wie 0=1). Stößt man auf so einen, ist man immer fertig und weiß, dass es keine Lösung gibt. Das ist bei einem Gleichungssystem nicht anders. Wenn man während des Gauß-Verfahrens auf einen Widerspruch stößt kann man getrost aufhören. Das LGS ist unlösbar.
Quelle
- Bildungsmediathek NRW (34)
- Bildungsserver Hessen (2)
- Mauswiesel Hessen (1)
- Deutscher Bildungsserver (1)
Systematik
- Mathematik (38)
- Mathematisch-Naturwissenschaftliche Fächer (36)
- Wissen (2)
- Grundschule (2)
- Gauss, Carl Friedrich (1)
- Gauß, Carl Friedrich (1)
- Geschichte der Mathematik (1)
Schlagwörter
- Mehrdeutig Lösbar (14)
- Gleichungssystem (13)
- Gauß (12)
- Matrix (10)
- Eindeutig Lösbar (8)
- Lgs (8)
- Unlösbar (7)