wahre Aussage - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Gleichungssysteme mit Sonderfällen: /keine Lösung/ oder /unendlich viele Lösungen/ Beispiel 1 | G.02.06
Bei einem Gleichungssystem gibt es zwei Sonderfälle: Entweder „keine Lösung“ oder „unendlich viele Lösung“. Den Fall „keine Lösung“ erhält man, wenn man beim Verrechnen der beiden Gleichungen auf einen Widerspruch stößt (1=0 oder 3=7 oder ). Den Fall „unendlich viele Lösung“ erhält man, wenn man beim Verrechnen der beiden Gleichungen auf eine wahre Aussage ...
Gleichungssysteme mit Sonderfällen: /keine Lösung/ oder /unendlich viele Lösungen/ | G.02.06
Bei einem Gleichungssystem gibt es zwei Sonderfälle: Entweder „keine Lösung“ oder „unendlich viele Lösung“. Den Fall „keine Lösung“ erhält man, wenn man beim Verrechnen der beiden Gleichungen auf einen Widerspruch stößt (1=0 oder 3=7 oder ). Den Fall „unendlich viele Lösung“ erhält man, wenn man beim Verrechnen der beiden Gleichungen auf eine wahre Aussage ...
Gleichungssysteme mit Sonderfällen: /keine Lösung/ oder /unendlich viele Lösungen/ Beispiel 2 | G.02.06
Bei einem Gleichungssystem gibt es zwei Sonderfälle: Entweder „keine Lösung“ oder „unendlich viele Lösung“. Den Fall „keine Lösung“ erhält man, wenn man beim Verrechnen der beiden Gleichungen auf einen Widerspruch stößt (1=0 oder 3=7 oder ). Den Fall „unendlich viele Lösung“ erhält man, wenn man beim Verrechnen der beiden Gleichungen auf eine wahre Aussage ...
Gleichungssysteme mit Sonderfällen: /keine Lösung/ oder /unendlich viele Lösungen/ Beispiel 3 | G.02.06
Bei einem Gleichungssystem gibt es zwei Sonderfälle: Entweder „keine Lösung“ oder „unendlich viele Lösung“. Den Fall „keine Lösung“ erhält man, wenn man beim Verrechnen der beiden Gleichungen auf einen Widerspruch stößt (1=0 oder 3=7 oder ). Den Fall „unendlich viele Lösung“ erhält man, wenn man beim Verrechnen der beiden Gleichungen auf eine wahre Aussage ...
Gegenseitige Lage von Ebene und Gerade bestimmen, Beispiel 1 | V.08.04
Hat man eine Gerade und eine Ebene gegeben, bei welchen in einem der beiden ein Parameter enthalten ist, so lautet die Frage meist nach dem „Schnittverhalten der Gerade mit der Ebene“ oder man soll die „gegenseitige Lage“ der beiden bestimmen. Bei diesem Schnitt Gerade Ebene gibt es zwei Vorgehensweisen: 1) Man berechnet das Skalarprodukt von Normalenvektor der Ebene mit ...
Gegenseitige Lage von Ebene und Gerade bestimmen, Beispiel 3 | V.08.04
Hat man eine Gerade und eine Ebene gegeben, bei welchen in einem der beiden ein Parameter enthalten ist, so lautet die Frage meist nach dem „Schnittverhalten der Gerade mit der Ebene“ oder man soll die „gegenseitige Lage“ der beiden bestimmen. Bei diesem Schnitt Gerade Ebene gibt es zwei Vorgehensweisen: 1) Man berechnet das Skalarprodukt von Normalenvektor der Ebene mit ...
Gegenseitige Lage von Ebene und Gerade bestimmen | V.08.04
Hat man eine Gerade und eine Ebene gegeben, bei welchen in einem der beiden ein Parameter enthalten ist, so lautet die Frage meist nach dem „Schnittverhalten der Gerade mit der Ebene“ oder man soll die „gegenseitige Lage“ der beiden bestimmen. Bei diesem Schnitt Gerade Ebene gibt es zwei Vorgehensweisen: 1) Man berechnet das Skalarprodukt von Normalenvektor der Ebene mit ...
Gegenseitige Lage von Ebene und Gerade bestimmen, Beispiel 2 | V.08.04
Hat man eine Gerade und eine Ebene gegeben, bei welchen in einem der beiden ein Parameter enthalten ist, so lautet die Frage meist nach dem „Schnittverhalten der Gerade mit der Ebene“ oder man soll die „gegenseitige Lage“ der beiden bestimmen. Bei diesem Schnitt Gerade Ebene gibt es zwei Vorgehensweisen: 1) Man berechnet das Skalarprodukt von Normalenvektor der Ebene mit ...
Bundestag-Quiz: Für Experten
Bei diesem interaktiven Quiz zum Bundestag können fortgeschrittene Lernende ihr Expertenwissen testen.
Punktprobe: so führt man sie richtig durch, Beispiel 2 | A.02.03
Wie prüft man, ob ein Punkt auf einer Gerade liegt? Sehr einfach: man macht eine Punktprobe, man setzt die also Koordinaten des Punktes in die Gerade ein. Also den x-Wert des Punktes setzt man für x ein, den y-Wert des Punktes setzt man in die Geradengleichung für y ein. Erhält man zum Schluss eine wahre Aussage (so was wie 0=0 oder 5=5 oder ) so liegt der Punkt auf der ...