unlösbar - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen
LGS lösen: keine Lösung, unlösbar, Widerspruch; Beispiel 2 | M.02.03
Der schönste Fall in Mathe ist immer der Widerspruch (so was wie 0=1). Stößt man auf so einen, ist man immer fertig und weiß, dass es keine Lösung gibt. Das ist bei einem Gleichungssystem nicht anders. Wenn man während des Gauß-Verfahrens auf einen Widerspruch stößt kann man getrost aufhören. Das LGS ist unlösbar.
LGS lösen: keine Lösung, unlösbar, Widerspruch | M.02.03
Der schönste Fall in Mathe ist immer der Widerspruch (so was wie 0=1). Stößt man auf so einen, ist man immer fertig und weiß, dass es keine Lösung gibt. Das ist bei einem Gleichungssystem nicht anders. Wenn man während des Gauß-Verfahrens auf einen Widerspruch stößt kann man getrost aufhören. Das LGS ist unlösbar.
LGS lösen: keine Lösung, unlösbar, Widerspruch; Beispiel 1 | M.02.03
Der schönste Fall in Mathe ist immer der Widerspruch (so was wie 0=1). Stößt man auf so einen, ist man immer fertig und weiß, dass es keine Lösung gibt. Das ist bei einem Gleichungssystem nicht anders. Wenn man während des Gauß-Verfahrens auf einen Widerspruch stößt kann man getrost aufhören. Das LGS ist unlösbar.
Matrix lösen: keine Lösung, unlösbar, Widerspruch; Beispiel 1 | M.02.06
Der schönste Fall in Mathe ist immer der Widerspruch (so was wie 0=1). Stößt man auf so einen, ist man immer fertig und weiß, dass es keine Lösung gibt. Das ist bei einem Gleichungssystem nicht anders. Wenn man während des Gauß-Verfahrens auf einen Widerspruch stößt kann man getrost aufhören. Die Matrix ist unlösbar.
Matrix lösen: keine Lösung, unlösbar, Widerspruch; Beispiel 2 | M.02.06
Der schönste Fall in Mathe ist immer der Widerspruch (so was wie 0=1). Stößt man auf so einen, ist man immer fertig und weiß, dass es keine Lösung gibt. Das ist bei einem Gleichungssystem nicht anders. Wenn man während des Gauß-Verfahrens auf einen Widerspruch stößt kann man getrost aufhören. Die Matrix ist unlösbar.
Matrix lösen: keine Lösung, unlösbar, Widerspruch | M.02.06
Der schönste Fall in Mathe ist immer der Widerspruch (so was wie 0=1). Stößt man auf so einen, ist man immer fertig und weiß, dass es keine Lösung gibt. Das ist bei einem Gleichungssystem nicht anders. Wenn man während des Gauß-Verfahrens auf einen Widerspruch stößt kann man getrost aufhören. Die Matrix ist unlösbar.
Matrix-Parameter: Matrix mit Parameter lösen, Beispiel 2 | M.02.07
Steckt in Matrizen ein Parameter drin, bringt man die Matrix zuerst auf Dreiecksform. Nun setzt man ALLE Diagonalelemente Null und löst nach dem Parameter auf (sofern im Diagonalelement überhaupt ein Parameter enthalten ist). Die Werte die man hier für den Parameter erhält, sind jeweils ein Sonderfall (also keine Lösung oder unendlich viele Lösungen). Anschließend setzt ...
Matrix-Parameter: Matrix mit Parameter lösen, Beispiel 1 | M.02.07
Steckt in Matrizen ein Parameter drin, bringt man die Matrix zuerst auf Dreiecksform. Nun setzt man ALLE Diagonalelemente Null und löst nach dem Parameter auf (sofern im Diagonalelement überhaupt ein Parameter enthalten ist). Die Werte die man hier für den Parameter erhält, sind jeweils ein Sonderfall (also keine Lösung oder unendlich viele Lösungen). Anschließend setzt ...
Matrix-Parameter: Matrix mit Parameter lösen, Beispiel 3 | M.02.07
Steckt in Matrizen ein Parameter drin, bringt man die Matrix zuerst auf Dreiecksform. Nun setzt man ALLE Diagonalelemente Null und löst nach dem Parameter auf (sofern im Diagonalelement überhaupt ein Parameter enthalten ist). Die Werte die man hier für den Parameter erhält, sind jeweils ein Sonderfall (also keine Lösung oder unendlich viele Lösungen). Anschließend setzt ...
Matrix-Parameter: Matrix mit Parameter lösen | M.02.07
Steckt in Matrizen ein Parameter drin, bringt man die Matrix zuerst auf Dreiecksform. Nun setzt man ALLE Diagonalelemente Null und löst nach dem Parameter auf (sofern im Diagonalelement überhaupt ein Parameter enthalten ist). Die Werte die man hier für den Parameter erhält, sind jeweils ein Sonderfall (also keine Lösung oder unendlich viele Lösungen). Anschließend setzt ...