senkrechte Spiegelung - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Senkrechte Spiegelung an Koordinatenachse oder Koordinatenebene | V.04.01
Eine „senkrechte Spiegelung“ bedeutet: „Spiegelung an Koordinatenachse“ oder „Spiegelung an Koordinatenebene“. Beides geht sehr einfach: man ändert einfach die Vorzeichen von denjenigen Koordinaten die NICHT im Namen stehen (z.B. bei Spiegelung an der x1-Achse ändert man die Vorzeichen der x2- und der x3-Koordinate).
Senkrechte Spiegelung an Koordinatenachse oder Koordinatenebene, Beispiel 2 | V.04.01
Eine „senkrechte Spiegelung“ bedeutet: „Spiegelung an Koordinatenachse“ oder „Spiegelung an Koordinatenebene“. Beides geht sehr einfach: man ändert einfach die Vorzeichen von denjenigen Koordinaten die NICHT im Namen stehen (z.B. bei Spiegelung an der x1-Achse ändert man die Vorzeichen der x2- und der x3-Koordinate).
Senkrechte Spiegelung an Koordinatenachse oder Koordinatenebene, Beispiel 3 | V.04.01
Eine „senkrechte Spiegelung“ bedeutet: „Spiegelung an Koordinatenachse“ oder „Spiegelung an Koordinatenebene“. Beides geht sehr einfach: man ändert einfach die Vorzeichen von denjenigen Koordinaten die NICHT im Namen stehen (z.B. bei Spiegelung an der x1-Achse ändert man die Vorzeichen der x2- und der x3-Koordinate).
Senkrechte Spiegelung an Koordinatenachse oder Koordinatenebene, Beispiel 1 | V.04.01
Eine „senkrechte Spiegelung“ bedeutet: „Spiegelung an Koordinatenachse“ oder „Spiegelung an Koordinatenebene“. Beides geht sehr einfach: man ändert einfach die Vorzeichen von denjenigen Koordinaten die NICHT im Namen stehen (z.B. bei Spiegelung an der x1-Achse ändert man die Vorzeichen der x2- und der x3-Koordinate).
Funktionen spiegeln über Verschieben, Beispiel 5 | A.23.05
Wenn man eine Funktion spiegeln will, z.B. an einer senkrechten Gerade der Form x=a, so verschiebt man die Funktion f(x) erst in waagerechte Richtung um „-a“, dann spiegelt man die Funktion an der y-Achse und schiebt die Funktion wieder um „a“ zurück. Benötigt man die Spiegelungen an einer waagerechten Geraden y=b, so verschiebt man f(x) in senkrechte Richtung um „-b“, ...
Funktionen spiegeln über Verschieben, Beispiel 2 | A.23.05
Wenn man eine Funktion spiegeln will, z.B. an einer senkrechten Gerade der Form x=a, so verschiebt man die Funktion f(x) erst in waagerechte Richtung um „-a“, dann spiegelt man die Funktion an der y-Achse und schiebt die Funktion wieder um „a“ zurück. Benötigt man die Spiegelungen an einer waagerechten Geraden y=b, so verschiebt man f(x) in senkrechte Richtung um „-b“, ...
Funktionen spiegeln über Verschieben | A.23.05
Wenn man eine Funktion spiegeln will, z.B. an einer senkrechten Gerade der Form x=a, so verschiebt man die Funktion f(x) erst in waagerechte Richtung um „-a“, dann spiegelt man die Funktion an der y-Achse und schiebt die Funktion wieder um „a“ zurück. Benötigt man die Spiegelungen an einer waagerechten Geraden y=b, so verschiebt man f(x) in senkrechte Richtung um „-b“, ...
Funktionen spiegeln über Verschieben, Beispiel 6 | A.23.05
Wenn man eine Funktion spiegeln will, z.B. an einer senkrechten Gerade der Form x=a, so verschiebt man die Funktion f(x) erst in waagerechte Richtung um „-a“, dann spiegelt man die Funktion an der y-Achse und schiebt die Funktion wieder um „a“ zurück. Benötigt man die Spiegelungen an einer waagerechten Geraden y=b, so verschiebt man f(x) in senkrechte Richtung um „-b“, ...
Funktionen spiegeln über Verschieben, Beispiel 4 | A.23.05
Wenn man eine Funktion spiegeln will, z.B. an einer senkrechten Gerade der Form x=a, so verschiebt man die Funktion f(x) erst in waagerechte Richtung um „-a“, dann spiegelt man die Funktion an der y-Achse und schiebt die Funktion wieder um „a“ zurück. Benötigt man die Spiegelungen an einer waagerechten Geraden y=b, so verschiebt man f(x) in senkrechte Richtung um „-b“, ...
Funktionen spiegeln über Verschieben, Beispiel 3 | A.23.05
Wenn man eine Funktion spiegeln will, z.B. an einer senkrechten Gerade der Form x=a, so verschiebt man die Funktion f(x) erst in waagerechte Richtung um „-a“, dann spiegelt man die Funktion an der y-Achse und schiebt die Funktion wieder um „a“ zurück. Benötigt man die Spiegelungen an einer waagerechten Geraden y=b, so verschiebt man f(x) in senkrechte Richtung um „-b“, ...