Funktionen spiegeln über Verschieben, Beispiel 6 | A.23.05
kostenloses Unterrichtsmaterial online bei Elixier
Wenn man eine Funktion spiegeln will, z.B. an einer senkrechten Gerade der Form x=a, so verschiebt man die Funktion f(x) erst in waagerechte Richtung um -a, dann spiegelt man die Funktion an der y-Achse und schiebt die Funktion wieder um a zurück. Benötigt man die Spiegelungen an einer waagerechten Geraden y=b, so verschiebt man f(x) in senkrechte Richtung um -b, spiegelt dann an der x-Achse und verschiebt danach die Funktion wieder um b zurück. Braucht man von einer Funktion die Punktspiegelung an einem Punkt S(a|b), so muss man zwei Achsenspiegelungen durchführen: nämlich die Spiegelung an der senkrechten Gerade x=a UND an der waagerechten Gerade y=b.