relative Häufigkeit - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen
Relative Häufigkeit, absolute Häufigkeit und wie man richtig damit rechnet; Beispiel 1 | W.11.02
Eine absolute Häufigkeit ist eine Anzahl (also eine ganze Zahl wie 0; 1; 2; ). Eine relative Häufigkeit ist eine Prozentzahl (also eine Kommazahl zwischen 0 und 1, bzw. in Prozent gerechnet: zwischen 0% und 100%). Eine kumulierte Häufigkeit (egal ob relativ oder absolut) ist eine aufsummierte Häufigkeit, beinhaltet also die Häufigkeiten von allen Werten die kleiner oder ...
Relative Häufigkeit, absolute Häufigkeit und wie man sie richtig berechnet | W.11.02
Eine absolute Häufigkeit ist eine Anzahl (also eine ganze Zahl wie 0; 1; 2; ). Eine relative Häufigkeit ist eine Prozentzahl (also eine Kommazahl zwischen 0 und 1, bzw. in Prozent gerechnet: zwischen 0% und 100%). Eine kumulierte Häufigkeit (egal ob relativ oder absolut) ist eine aufsummierte Häufigkeit, beinhaltet also die Häufigkeiten von allen Werten die kleiner oder ...
Relative Häufigkeit, absolute Häufigkeit und wie man richtig damit rechnet; Beispiel 2 | W.11.02
Eine absolute Häufigkeit ist eine Anzahl (also eine ganze Zahl wie 0; 1; 2; ). Eine relative Häufigkeit ist eine Prozentzahl (also eine Kommazahl zwischen 0 und 1, bzw. in Prozent gerechnet: zwischen 0% und 100%). Eine kumulierte Häufigkeit (egal ob relativ oder absolut) ist eine aufsummierte Häufigkeit, beinhaltet also die Häufigkeiten von allen Werten die kleiner oder ...
Gesetz der großen Zahlen
Mit über 150 Artikeln und über 100 interaktiven Übungen gehört MatheGuru.com zu den umfangreichsten Mathematikseiten im deutschsprachigen Internet. Zahlreiche farbige Abbildungen visualisieren die einzelnen Sachverhalte und helfen beim Verständnis. Hier wird das Gesetz der großen Zahlen erklärt und an einem Beispiel gezeigt.
Wahrscheinlichkeitsrechnung und Statistik 1
Auf dieser Seite von mathe-online.at werden sehr anschaulich und sehr ausführlich u. a. die folgenden Begriffe erklärt: Wahrscheinlichkeit, relative Häufigkeit, Laplace-Experiment, Gegenereignis, die Additions- und die Multiplikationsregel, Baumdiagramm, Kombinatorik, bedingte Wahrscheinlichkeit und der Satz von Bayes.
Quelle
Systematik
- Mathematik (9)
- Mathematisch-Naturwissenschaftliche Fächer (9)
- Stochastik (4)
- Mehrstufige Zufallsversuche (1)
- Laplace-Versuche (1)
- Häufigkeitsverteilungen, Diskrete Zufallsgrößen (1)
- Wahrscheinlichkeit von Ereignissen (1)
Schlagwörter
- Relative Häufigkeit (4)
- Kumulierte Häufigkeit (3)
- Absolute Häufigkeit (3)
- Wahrscheinlichkeitsrechnung (3)
- Häufigkeit (2)
- Statistik (2)
- Stochastik (2)