e-Funktion - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

e-Funktion - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Exponentialfunktion: Asymptote und Grenzwert berechnen, Beispiel 1 | A.41.07
Um einen Grenzwert zu berechnen, lässt man in der Funktion x einmal gegen plus Unendlich und einmal gegen minus Unendlich laufen. e hoch unendlich geht gegen unendlich, e hoch minus unendlich geht gegen Null. Ist das Ergebnis eine Zahl, so ist dieses die waagerechte Asymptote.
e-Funktion (Mathematik)
Die e-Funktion ist die natürliche Exponentialfunktion mit der Basis e, der Eulerschen Zahl. Ihre Umkehrfunktion ist der natürliche Logarithmus.
Exponentialfunktion: kurze Einführung in die e-Funktion | A.41
Eine Exponentialfunktion ist eine Funktion, in welcher die Unbekannte „x“ in der Hochzahl steht. Die mit Abstand wichtigste Exponentialfunktion ist die e-Funktion, welche die Eulersche Zahl (also e=2,718...) als Basis hat.
Kubische Funktion, Funktionsanalyse / Kurvendiskussion, Beispiel 2a: wir zeichnen die Funktion
Wir betrachten eine kubische Funktion und machen davon eine Funktionsuntersuchung (=Kurvendiskussion). Wir berechnen die Nullstellen, Hoch-, Tief- und Wendepunkte, machen eine Skizze der Funktion und lassen dadurch die kosmische Energie des Universums eine Entspannung unseres Seelenzustands bewirken.
Kubische Funktion, Funktionsanalyse / Kurvendiskussion, Beispiel 1a: wir zeichnen die Funktion
Wir sehen hier ein Beispiel einer Funktionsuntersuchung (=Kurvendiskussion) einer Funktion dritten Grades. Wir berechnen die Nullstellen, Hoch-, Tief- und Wendepunkte, machen eine Skizze der Funktion und freuen uns des Lebens.
Funktion verschieben, Funktion strecken, Funktion spiegeln | A.23
Man kann Funktionen strecken (mit einem bestimmten Streckfaktor), Funktionen spiegeln und Funktionen verschieben. Es gibt für jedes je eine mathematische Vorgehensweise, welche sich zu merken lohnt.
Injektiv, surjektiv, bijektiv: wie oft wird der y-Wert einer Funktion angenommen, Beispiel 1
Bei Injektivität, Surjektivität und Bijektivität interessiert man sich dafür, wie oft die y-Werte einer Funktion (oder Abbildung) angenommen werden. Wird jeder y-Wert der Funktion höchstens einmal angenommen (also einmal oder keinmal) nennt man die Funktion injektiv (auch linkseindeutig oder linkstotal). Wird jeder y-Wert der Funktion mindestens einmal angenommen (also ...
Injektiv, surjektiv, bijektiv: wie oft wird der y-Wert einer Funktion angenommen, Beispiel 2
Bei Injektivität, Surjektivität und Bijektivität interessiert man sich dafür, wie oft die y-Werte einer Funktion (oder Abbildung) angenommen werden. Wird jeder y-Wert der Funktion höchstens einmal angenommen (also einmal oder keinmal) nennt man die Funktion injektiv (auch linkseindeutig oder linkstotal). Wird jeder y-Wert der Funktion mindestens einmal angenommen (also ...
Injektiv, surjektiv, bijektiv: wie oft wird der y-Wert einer Funktion angenommen, Beispiel 6
Bei Injektivität, Surjektivität und Bijektivität interessiert man sich dafür, wie oft die y-Werte einer Funktion (oder Abbildung) angenommen werden. Wird jeder y-Wert der Funktion höchstens einmal angenommen (also einmal oder keinmal) nennt man die Funktion injektiv (auch linkseindeutig oder linkstotal). Wird jeder y-Wert der Funktion mindestens einmal angenommen (also ...
Injektiv, surjektiv, bijektiv: wie oft wird der y-Wert einer Funktion angenommen, Beispiel 3
Bei Injektivität, Surjektivität und Bijektivität interessiert man sich dafür, wie oft die y-Werte einer Funktion (oder Abbildung) angenommen werden. Wird jeder y-Wert der Funktion höchstens einmal angenommen (also einmal oder keinmal) nennt man die Funktion injektiv (auch linkseindeutig oder linkstotal). Wird jeder y-Wert der Funktion mindestens einmal angenommen (also ...