Symmetriepunkt - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Symmetriepunkt - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Punkt an Punkt spiegeln; Spiegelpunkt; Symmetriepunkt, Beispiel 2 | A.01.05
Einen Punkt spiegelt man an einem zweiten, indem man sich beide ins Koordinatensystem zeichnet und dann einfach „per Hingucken“ löst. Selbstverständlich gibt es auch eine Formel für die Punkt-Spiegelung, die man anwenden kann (falls man möchte). Falls P(a|b) der Punkt ist, den man spiegeln möchte und S(u|v) der Punkt an welchem gespiegelt werden soll (sozusagen der ...
Symmetrie einer Funktion über Verschieben beweisen, Beispiel 2 | 17.04
Ist eine Funktion punktsymmetrisch zu irgendeinem Symmetriepunkt S(a|b), so verschiebt man die Funktion so weit nach links/rechts und oben/unten, bis der Symmetriepunkt im Ursprung liegt. Nun beweist man von der verschobenen Funktion die Symmetrie zum Ursprung. Ist eine Funktion achsensymmetrisch zu irgendeiner senkrechten Symmetrieachse x=a, so verschiebt man die Funktion so ...
Symmetrie einer Funktion über Verschieben beweisen, Beispiel 3 | 17.04
Ist eine Funktion punktsymmetrisch zu irgendeinem Symmetriepunkt S(a|b), so verschiebt man die Funktion so weit nach links/rechts und oben/unten, bis der Symmetriepunkt im Ursprung liegt. Nun beweist man von der verschobenen Funktion die Symmetrie zum Ursprung. Ist eine Funktion achsensymmetrisch zu irgendeiner senkrechten Symmetrieachse x=a, so verschiebt man die Funktion so ...
Punkt an Punkt spiegeln; Spiegelpunkt; Symmetriepunkt, Beispiel 4 | A.01.05
Einen Punkt spiegelt man an einem zweiten, indem man sich beide ins Koordinatensystem zeichnet und dann einfach „per Hingucken“ löst. Selbstverständlich gibt es auch eine Formel für die Punkt-Spiegelung, die man anwenden kann (falls man möchte). Falls P(a|b) der Punkt ist, den man spiegeln möchte und S(u|v) der Punkt an welchem gespiegelt werden soll (sozusagen der ...
Punkt an Punkt spiegeln; Spiegelpunkt; Symmetriepunkt, Beispiel 1 | A.01.05
Einen Punkt spiegelt man an einem zweiten, indem man sich beide ins Koordinatensystem zeichnet und dann einfach „per Hingucken“ löst. Selbstverständlich gibt es auch eine Formel für die Punkt-Spiegelung, die man anwenden kann (falls man möchte). Falls P(a|b) der Punkt ist, den man spiegeln möchte und S(u|v) der Punkt an welchem gespiegelt werden soll (sozusagen der ...
Punkt an Punkt spiegeln; Spiegelpunkt; Symmetriepunkt | A.01.05
Einen Punkt spiegelt man an einem zweiten, indem man sich beide ins Koordinatensystem zeichnet und dann einfach „per Hingucken“ löst. Selbstverständlich gibt es auch eine Formel für die Punkt-Spiegelung, die man anwenden kann (falls man möchte). Falls P(a|b) der Punkt ist, den man spiegeln möchte und S(u|v) der Punkt an welchem gespiegelt werden soll (sozusagen der ...
Punkt an Punkt spiegeln; Spiegelpunkt; Symmetriepunkt, Beispiel 3 | A.01.05
Einen Punkt spiegelt man an einem zweiten, indem man sich beide ins Koordinatensystem zeichnet und dann einfach „per Hingucken“ löst. Selbstverständlich gibt es auch eine Formel für die Punkt-Spiegelung, die man anwenden kann (falls man möchte). Falls P(a|b) der Punkt ist, den man spiegeln möchte und S(u|v) der Punkt an welchem gespiegelt werden soll (sozusagen der ...
Symmetrie einer Funktion über Verschieben beweisen, Beispiel 1 | 17.04
Ist eine Funktion punktsymmetrisch zu irgendeinem Symmetriepunkt S(a|b), so verschiebt man die Funktion so weit nach links/rechts und oben/unten, bis der Symmetriepunkt im Ursprung liegt. Nun beweist man von der verschobenen Funktion die Symmetrie zum Ursprung. Ist eine Funktion achsensymmetrisch zu irgendeiner senkrechten Symmetrieachse x=a, so verschiebt man die Funktion so ...
Symmetrie einer Funktion über Verschieben beweisen, Beispiel 4 | 17.04
Ist eine Funktion punktsymmetrisch zu irgendeinem Symmetriepunkt S(a|b), so verschiebt man die Funktion so weit nach links/rechts und oben/unten, bis der Symmetriepunkt im Ursprung liegt. Nun beweist man von der verschobenen Funktion die Symmetrie zum Ursprung. Ist eine Funktion achsensymmetrisch zu irgendeiner senkrechten Symmetrieachse x=a, so verschiebt man die Funktion so ...
Symmetrie einer Funktion über Verschieben beweisen | 17.04
Ist eine Funktion punktsymmetrisch zu irgendeinem Symmetriepunkt S(a|b), so verschiebt man die Funktion so weit nach links/rechts und oben/unten, bis der Symmetriepunkt im Ursprung liegt. Nun beweist man von der verschobenen Funktion die Symmetrie zum Ursprung. Ist eine Funktion achsensymmetrisch zu irgendeiner senkrechten Symmetrieachse x=a, so verschiebt man die Funktion so ...