Symmetrie einer Funktion über Verschieben beweisen, Beispiel 2 | 17.04
kostenloses Unterrichtsmaterial online bei Elixier
Ist eine Funktion punktsymmetrisch zu irgendeinem Symmetriepunkt S(a|b), so verschiebt man die Funktion so weit nach links/rechts und oben/unten, bis der Symmetriepunkt im Ursprung liegt. Nun beweist man von der verschobenen Funktion die Symmetrie zum Ursprung. Ist eine Funktion achsensymmetrisch zu irgendeiner senkrechten Symmetrieachse x=a, so verschiebt man die Funktion so weit nach links/rechts, bis die Symmetrieachse auf der y-Achse liegt. Nun beweist man von der verschobenen Funktion die Symmetrie zur y-Achse.