Stammfunktion - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen
Stammfunktion, Integral und wie man damit rechnet | A.14
Die Stammfunktion einer Funktion braucht man, um diverse Flächen zu berechnen. Bei anwendungsbezogenen Aufgaben ist Stammfunktion meist eine Gesamtmenge (z.B. wenn f(x) die Anzahl von Würstchen beschreibt, die eine Imbissbude verkauft, ist die Stammfunktion die Gesamtanzahl aller Würstchen vom Zeitpunkt A bis zum Zeitpunkt B). Fast jeder Funktionstyp hat andere Regeln zur ...
Logarithmusfunktion: Stammfunktion bestimmen, Beispiel 1 | A.44.04
Die Stammfunktion vom ln ist nicht ganz einfach zu errechnen. Wahrscheinlich müssen Sie dieses aber auch nie errechnen, sondern dürfen aus der Formelsammlung verwenden, dass für die Stammfunktion des Logarithmus gilt: f(x)=ln(x) == F(x)=x*ln(x)-x.
Logarithmusfunktion: Stammfunktion bestimmen, Beispiel 3 | A.44.04
Die Stammfunktion vom ln ist nicht ganz einfach zu errechnen. Wahrscheinlich müssen Sie dieses aber auch nie errechnen, sondern dürfen aus der Formelsammlung verwenden, dass für die Stammfunktion des Logarithmus gilt: f(x)=ln(x) == F(x)=x*ln(x)-x.
Logarithmusfunktion: Stammfunktion bestimmen, Beispiel 2 | A.44.04
Die Stammfunktion vom ln ist nicht ganz einfach zu errechnen. Wahrscheinlich müssen Sie dieses aber auch nie errechnen, sondern dürfen aus der Formelsammlung verwenden, dass für die Stammfunktion des Logarithmus gilt: f(x)=ln(x) == F(x)=x*ln(x)-x.
Logarithmus-Funktion integrieren bzw. Stammfunktion bilden, Beispiel 4 | A.14.04
Einen ganz bestimmten Typ von Funktionen, kann man mit den normalen Integrationsregeln nicht bearbeiten. Es um Brüche, die oben nur eine Zahl stehen haben, unten einen Term der Form: m*x+b und KEINE Hochzahl. In diesem Fall ist das wesentliche Element der Stammfunktion der ln (Logarithmus zu Basis e).
Logarithmus-Funktion integrieren bzw. Stammfunktion bilden, Beispiel 5 | A.14.04
Einen ganz bestimmten Typ von Funktionen, kann man mit den normalen Integrationsregeln nicht bearbeiten. Es um Brüche, die oben nur eine Zahl stehen haben, unten einen Term der Form: m*x+b und KEINE Hochzahl. In diesem Fall ist das wesentliche Element der Stammfunktion der ln (Logarithmus zu Basis e).
Logarithmus-Funktion integrieren bzw. Stammfunktion bilden, Beispiel 6 | A.14.04
Einen ganz bestimmten Typ von Funktionen, kann man mit den normalen Integrationsregeln nicht bearbeiten. Es um Brüche, die oben nur eine Zahl stehen haben, unten einen Term der Form: m*x+b und KEINE Hochzahl. In diesem Fall ist das wesentliche Element der Stammfunktion der ln (Logarithmus zu Basis e).
Logarithmus-Funktion integrieren bzw. Stammfunktion bilden, Beispiel 2 | A.14.04
Einen ganz bestimmten Typ von Funktionen, kann man mit den normalen Integrationsregeln nicht bearbeiten. Es um Brüche, die oben nur eine Zahl stehen haben, unten einen Term der Form: m*x+b und KEINE Hochzahl. In diesem Fall ist das wesentliche Element der Stammfunktion der ln (Logarithmus zu Basis e).
Logarithmus-Funktion integrieren bzw. Stammfunktion bilden, Beispiel 3 | A.14.04
Einen ganz bestimmten Typ von Funktionen, kann man mit den normalen Integrationsregeln nicht bearbeiten. Es um Brüche, die oben nur eine Zahl stehen haben, unten einen Term der Form: m*x+b und KEINE Hochzahl. In diesem Fall ist das wesentliche Element der Stammfunktion der ln (Logarithmus zu Basis e).
Logarithmus-Funktion integrieren bzw. Stammfunktion bilden, Beispiel 1 | A.14.04
Einen ganz bestimmten Typ von Funktionen, kann man mit den normalen Integrationsregeln nicht bearbeiten. Es um Brüche, die oben nur eine Zahl stehen haben, unten einen Term der Form: m*x+b und KEINE Hochzahl. In diesem Fall ist das wesentliche Element der Stammfunktion der ln (Logarithmus zu Basis e).
Quelle
- Bildungsmediathek NRW (146)
- Deutscher Bildungsserver (12)
- Bildungsserver Hessen (4)
- Lehrer-Online (1)
Systematik
- Mathematik (163)
- Mathematisch-Naturwissenschaftliche Fächer (163)
- Integralrechnung (16)
- Zuordnungen, Funktionen (16)
- Stammfunktion (12)
- Hauptsatz (2)
- Bestimmtes Integral (1)
Schlagwörter
- Stammfunktion (156)
- Analysis (147)
- Funktion (Mathematik) (145)
- E-Learning (145)
- Video (145)
- Integralrechnung (103)
- Ableitung (81)