Matrizen lösen - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen
Matrizen und Lineares Gleichungssystem: welche Rechenoperationen es gibt | M.03
Mit Matrizen kann man die verschiedensten Rechnungen anstellen. Die häufigsten Rechenoperationen sind die Matrizenmultiplikation, das Invertieren von Matrizen (Inverse berechnen), das Transponieren von Matrizen und Lösen von Matrizengleichungen. Diese vier Operationen erläutern wir in den folgenden Kapiteln.
Matrix lösen: eindeutige Lösung mit Gauß-Verfahren, Beispiel 2 | M.02.04
Um die Lösung einer Matrix zu erhalten, wendet man natürlich das Gauß-Verfahren an. Wenn man bei einem Gleichungssystem genau so viele Gleichungen hat wie Unbekannte (die Matrix also EINE Spalte mehr hat als Zeilen) und NACH dem Gauß-Verfahren nirgends in der Diagonale eine Null steht, erhält man für jede der Unbekannten genau eine Lösung, man hat also eine eindeutige ...
Matrix lösen: eindeutige Lösung mit Gauß-Verfahren | M.02.04
Um die Lösung einer Matrix zu erhalten, wendet man natürlich das Gauß-Verfahren an. Wenn man bei einem Gleichungssystem genau so viele Gleichungen hat wie Unbekannte (die Matrix also EINE Spalte mehr hat als Zeilen) und NACH dem Gauß-Verfahren nirgends in der Diagonale eine Null steht, erhält man für jede der Unbekannten genau eine Lösung, man hat also eine eindeutige ...
Matrix lösen: eindeutige Lösung mit Gauß-Verfahren, Beispiel 3 | M.02.04
Um die Lösung einer Matrix zu erhalten, wendet man natürlich das Gauß-Verfahren an. Wenn man bei einem Gleichungssystem genau so viele Gleichungen hat wie Unbekannte (die Matrix also EINE Spalte mehr hat als Zeilen) und NACH dem Gauß-Verfahren nirgends in der Diagonale eine Null steht, erhält man für jede der Unbekannten genau eine Lösung, man hat also eine eindeutige ...
Matrix lösen: eindeutige Lösung mit Gauß-Verfahren, Beispiel 1 | M.02.04
Um die Lösung einer Matrix zu erhalten, wendet man natürlich das Gauß-Verfahren an. Wenn man bei einem Gleichungssystem genau so viele Gleichungen hat wie Unbekannte (die Matrix also EINE Spalte mehr hat als Zeilen) und NACH dem Gauß-Verfahren nirgends in der Diagonale eine Null steht, erhält man für jede der Unbekannten genau eine Lösung, man hat also eine eindeutige ...
Matrix lösen: eindeutige Lösung mit Gauß-Verfahren, Beispiel 4 | M.02.04
Um die Lösung einer Matrix zu erhalten, wendet man natürlich das Gauß-Verfahren an. Wenn man bei einem Gleichungssystem genau so viele Gleichungen hat wie Unbekannte (die Matrix also EINE Spalte mehr hat als Zeilen) und NACH dem Gauß-Verfahren nirgends in der Diagonale eine Null steht, erhält man für jede der Unbekannten genau eine Lösung, man hat also eine eindeutige ...
LGS lösen: keine Lösung, unlösbar, Widerspruch; Beispiel 2 | M.02.03
Der schönste Fall in Mathe ist immer der Widerspruch (so was wie 0=1). Stößt man auf so einen, ist man immer fertig und weiß, dass es keine Lösung gibt. Das ist bei einem Gleichungssystem nicht anders. Wenn man während des Gauß-Verfahrens auf einen Widerspruch stößt kann man getrost aufhören. Das LGS ist unlösbar.
LGS lösen: keine Lösung, unlösbar, Widerspruch | M.02.03
Der schönste Fall in Mathe ist immer der Widerspruch (so was wie 0=1). Stößt man auf so einen, ist man immer fertig und weiß, dass es keine Lösung gibt. Das ist bei einem Gleichungssystem nicht anders. Wenn man während des Gauß-Verfahrens auf einen Widerspruch stößt kann man getrost aufhören. Das LGS ist unlösbar.
LGS lösen: keine Lösung, unlösbar, Widerspruch; Beispiel 1 | M.02.03
Der schönste Fall in Mathe ist immer der Widerspruch (so was wie 0=1). Stößt man auf so einen, ist man immer fertig und weiß, dass es keine Lösung gibt. Das ist bei einem Gleichungssystem nicht anders. Wenn man während des Gauß-Verfahrens auf einen Widerspruch stößt kann man getrost aufhören. Das LGS ist unlösbar.
Matrix lösen: keine Lösung, unlösbar, Widerspruch | M.02.06
Der schönste Fall in Mathe ist immer der Widerspruch (so was wie 0=1). Stößt man auf so einen, ist man immer fertig und weiß, dass es keine Lösung gibt. Das ist bei einem Gleichungssystem nicht anders. Wenn man während des Gauß-Verfahrens auf einen Widerspruch stößt kann man getrost aufhören. Die Matrix ist unlösbar.