Laplace-Versuche - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Laplace-Versuche - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Wahrscheinlichkeitsrechnung und Statistik 1
Auf dieser Seite von mathe-online.at werden sehr anschaulich und sehr ausführlich u. a. die folgenden Begriffe erklärt: Wahrscheinlichkeit, relative Häufigkeit, Laplace-Experiment, Gegenereignis, die Additions- und die Multiplikationsregel, Baumdiagramm, Kombinatorik, bedingte Wahrscheinlichkeit und der Satz von Bayes. 
Laplace Wahrscheinlichkeit: Laplace-Experiment, Moivre-Laplace, Laplace-Gleichung | W.14.07
Laplace war ein Mathematiker, sehr in recht vielen Bereichen tätig war. Der Begriff „Laplace“ taucht also auch in der Wahrscheinlichkeitstheorie häufig und mit unterschiedlichen Bedeutungen(!) auf. 1. Das „Laplace-Experiment“ ist ein Versuch in dem alle denkbaren Ausgänge die gleiche W.S. haben. Z.B. der Münzwurf (W.S. ist je 50%), der ideale Würfel mit der W.S. von ...
Moivre-Laplace Näherungsformel, Beispiel 3 | W.18.03
Gelegentlich muss man die Binomialverteilung durch die Gaußverteilung annähern. (Vor allem wenn die Zahlen so groß sind, dass jeder Taschenrechner aussteigt [das geht relativ schnell]). Das ist erlaubt wenn die sogenannte „Laplace Bedingung“ erfüllt ist, also wenn die Standardabweichung größer als 3 ist. Ist das der Fall, kann die Annäherung durchgeführt werden, d.h. ...
Moivre-Laplace Näherungsformel, Beispiel 2 | W.18.03
Gelegentlich muss man die Binomialverteilung durch die Gaußverteilung annähern. (Vor allem wenn die Zahlen so groß sind, dass jeder Taschenrechner aussteigt [das geht relativ schnell]). Das ist erlaubt wenn die sogenannte „Laplace Bedingung“ erfüllt ist, also wenn die Standardabweichung größer als 3 ist. Ist das der Fall, kann die Annäherung durchgeführt werden, d.h. ...
Moivre-Laplace Näherungsformel | W.18.03
Gelegentlich muss man die Binomialverteilung durch die Gaußverteilung annähern. (Vor allem wenn die Zahlen so groß sind, dass jeder Taschenrechner aussteigt [das geht relativ schnell]). Das ist erlaubt wenn die sogenannte „Laplace Bedingung“ erfüllt ist, also wenn die Standardabweichung größer als 3 ist. Ist das der Fall, kann die Annäherung durchgeführt werden, d.h. ...
Moivre-Laplace Näherungsformel, Beispiel 1 | W.18.03
Gelegentlich muss man die Binomialverteilung durch die Gaußverteilung annähern. (Vor allem wenn die Zahlen so groß sind, dass jeder Taschenrechner aussteigt [das geht relativ schnell]). Das ist erlaubt wenn die sogenannte „Laplace Bedingung“ erfüllt ist, also wenn die Standardabweichung größer als 3 ist. Ist das der Fall, kann die Annäherung durchgeführt werden, d.h. ...
Wahrscheinlichkeiten beim Roulette
Hier erlernen die Schüler, einfache Wahrscheinlichkeiten beim Roulette-Spiel zu berechnen. Des Weiteren wird das Roulette-Spiel an sich erklärt.
Laplace-Experiment (Mathematik)
Ein Laplace-Experiment ist ein Zufallsexperiment , bei dem die unterschiedlichen Elementarereignisse alle gleich wahrscheinlich sind.
Mathematik-digital/Laplace-Wahrscheinlichkeit wiederholen und vertiefen
In diesem Lernpfad, geht es um die Wiederholung und Vertiefung der Laplace-Wahrscheinlichkeit. Zu Beginn wird an das Vorwissen über Zufallsexperimente angeknüpft. Im weiteren Verlauf machen die Schülerinnen und Schüler erste Erfahrungen mit mehrstufigen Zufallsversuchen und den Pfadregeln.
Binomialverteilung LaPlace Bedingung | W.16.04
Die Binomialverteilung berechnet man mit einem GTR oder einem CAS mit einem einfachen Befehl: „binompdf(n,p,k)“. Hierbei ist „n“ die Gesamtanzahl aller Züge, k ist die Anzahl der gewünschten Treffer, p ist die W.S. eines einzelnen Treffers. Will man die Summe aller Treffer von „0“ bis „k“ haben, kann man den Befehl „binomcdf(n,p,k)“ verwendet.