Laplace Wahrscheinlichkeit: Laplace-Experiment, Moivre-Laplace, Laplace-Gleichung | W.14.07
kostenloses Unterrichtsmaterial online bei Elixier
Laplace war ein Mathematiker, sehr in recht vielen Bereichen tätig war. Der Begriff Laplace taucht also auch in der Wahrscheinlichkeitstheorie häufig und mit unterschiedlichen Bedeutungen(!) auf. 1. Das Laplace-Experiment ist ein Versuch in dem alle denkbaren Ausgänge die gleiche W.S. haben. Z.B. der Münzwurf (W.S. ist je 50%), der ideale Würfel mit der W.S. von je einem Sechstel (dementsprechend redet man auch vom Laplace-Würfel), etc. Ein Laplace-Experiment bezeichnet daher auch kein eigenes, abgeschlossenes Kapitel der Stochastik sondern kann eigentlich überall auftauchen. Oftmals werden diese Experimente fälschlicherweise auch Laplace-Verteilung genannt, obwohl das eigentlich etwas völlig anderes ist. 2. Moivre-Laplace: Ist die Standardabweichung größer als 3, so darf man die Binomialverteilung in eine Normalverteilung umwandeln. Diese Aussage heißt Näherungsformel von Moivre-Laplace. 3. Die Laplace-Verteilung wird über eine Formel berechnet. Man braucht die Laplace-Verteilung sehr selten und sie ist auch nicht in allen Büchern zu finden. Als Schüler/Student braucht man die Laplace-Verteilung praktisch nie. (Wichtig: nicht mit dem Laplace-Experiment verwechseln!! Dieses braucht man recht häufig!)