LGS - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

LGS lösen: keine Lösung, unlösbar, Widerspruch; Beispiel 2 | M.02.03
Der schönste Fall in Mathe ist immer der Widerspruch (so was wie 0=1). Stößt man auf so einen, ist man immer fertig und weiß, dass es keine Lösung gibt. Das ist bei einem Gleichungssystem nicht anders. Wenn man während des Gauß-Verfahrens auf einen Widerspruch stößt kann man getrost aufhören. Das LGS ist unlösbar.
LGS lösen: keine Lösung, unlösbar, Widerspruch | M.02.03
Der schönste Fall in Mathe ist immer der Widerspruch (so was wie 0=1). Stößt man auf so einen, ist man immer fertig und weiß, dass es keine Lösung gibt. Das ist bei einem Gleichungssystem nicht anders. Wenn man während des Gauß-Verfahrens auf einen Widerspruch stößt kann man getrost aufhören. Das LGS ist unlösbar.
LGS lösen: keine Lösung, unlösbar, Widerspruch; Beispiel 1 | M.02.03
Der schönste Fall in Mathe ist immer der Widerspruch (so was wie 0=1). Stößt man auf so einen, ist man immer fertig und weiß, dass es keine Lösung gibt. Das ist bei einem Gleichungssystem nicht anders. Wenn man während des Gauß-Verfahrens auf einen Widerspruch stößt kann man getrost aufhören. Das LGS ist unlösbar.
Matrizen und LGS
Die gängige Abkürzung für „Lineares GleichungsSystem“ ist „LGS“. Läßt man in einem LGS die Buchstaben der Unbekannten weg und schreibt nur die Zahlen auf, nennt man das Ganze „Matrix“ (bzw. mehrere „Matrizen“). Eine Einführung
Gleichungssysteme mit drei Gleichungen und drei Unbekannten lösen, Beispiel 2 | G.02.08
Bei Gleichungssystemen mit drei Gleichungen und drei Unbekannten (3x3-LGS) gibt es nicht mehr so viele Lösungsmöglichkeiten, wie beim 2x2-LGS. Eine Möglichkeit so ein LGS zu lösen, ist: man löst in irgendeiner Gleichung nach irgendeiner Variablen auf. Nun setzt man den Ergebnisterm dieser Variable in BEIDE anderen Gleichungen ein und erhält somit zwar nur noch zwei ...
Gleichungssysteme mit drei Gleichungen und drei Unbekannten lösen | G.02.08
Bei Gleichungssystemen mit drei Gleichungen und drei Unbekannten (3x3-LGS) gibt es nicht mehr so viele Lösungsmöglichkeiten, wie beim 2x2-LGS. Eine Möglichkeit so ein LGS zu lösen, ist: man löst in irgendeiner Gleichung nach irgendeiner Variablen auf. Nun setzt man den Ergebnisterm dieser Variable in BEIDE anderen Gleichungen ein und erhält somit zwar nur noch zwei ...
Gleichungssysteme mit drei Gleichungen und drei Unbekannten lösen, Beispiel 1 | G.02.08
Bei Gleichungssystemen mit drei Gleichungen und drei Unbekannten (3x3-LGS) gibt es nicht mehr so viele Lösungsmöglichkeiten, wie beim 2x2-LGS. Eine Möglichkeit so ein LGS zu lösen, ist: man löst in irgendeiner Gleichung nach irgendeiner Variablen auf. Nun setzt man den Ergebnisterm dieser Variable in BEIDE anderen Gleichungen ein und erhält somit zwar nur noch zwei ...
LGS lösen: eindeutige Lösung mit Gauß-Verfahren | M.02.01
Um die Lösung eines LGS zu erhalten (sprich: den Lösungsvektor), wendet man natürlich das Gauß-Verfahren an. Wenn man bei einem Gleichungssystem genau so viele Gleichungen hat wie Unbekannte und NACH dem Gauß-Verfahren nirgends in der Diagonale eine Null steht, erhält man für jede der Unbekannten genau eine Lösung, man hat also eine „eindeutige Lösung“. Nun hat man ...
LGS lösen: eindeutige Lösung mit Gauß-Verfahren, Beispiel 3 | M.02.01
Um die Lösung eines LGS zu erhalten (sprich: den Lösungsvektor), wendet man natürlich das Gauß-Verfahren an. Wenn man bei einem Gleichungssystem genau so viele Gleichungen hat wie Unbekannte und NACH dem Gauß-Verfahren nirgends in der Diagonale eine Null steht, erhält man für jede der Unbekannten genau eine Lösung, man hat also eine „eindeutige Lösung“. Nun hat man ...
LGS lösen: eindeutige Lösung mit Gauß-Verfahren, Beispiel 4 | M.02.01
Um die Lösung eines LGS zu erhalten (sprich: den Lösungsvektor), wendet man natürlich das Gauß-Verfahren an. Wenn man bei einem Gleichungssystem genau so viele Gleichungen hat wie Unbekannte und NACH dem Gauß-Verfahren nirgends in der Diagonale eine Null steht, erhält man für jede der Unbekannten genau eine Lösung, man hat also eine „eindeutige Lösung“. Nun hat man ...