Lösungsvektor - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

LGS lösen: eindeutige Lösung mit Gauß-Verfahren | M.02.01
Um die Lösung eines LGS zu erhalten (sprich: den Lösungsvektor), wendet man natürlich das Gauß-Verfahren an. Wenn man bei einem Gleichungssystem genau so viele Gleichungen hat wie Unbekannte und NACH dem Gauß-Verfahren nirgends in der Diagonale eine Null steht, erhält man für jede der Unbekannten genau eine Lösung, man hat also eine „eindeutige Lösung“. Nun hat man ...
LGS lösen: eindeutige Lösung mit Gauß-Verfahren, Beispiel 3 | M.02.01
Um die Lösung eines LGS zu erhalten (sprich: den Lösungsvektor), wendet man natürlich das Gauß-Verfahren an. Wenn man bei einem Gleichungssystem genau so viele Gleichungen hat wie Unbekannte und NACH dem Gauß-Verfahren nirgends in der Diagonale eine Null steht, erhält man für jede der Unbekannten genau eine Lösung, man hat also eine „eindeutige Lösung“. Nun hat man ...
LGS lösen: eindeutige Lösung mit Gauß-Verfahren, Beispiel 4 | M.02.01
Um die Lösung eines LGS zu erhalten (sprich: den Lösungsvektor), wendet man natürlich das Gauß-Verfahren an. Wenn man bei einem Gleichungssystem genau so viele Gleichungen hat wie Unbekannte und NACH dem Gauß-Verfahren nirgends in der Diagonale eine Null steht, erhält man für jede der Unbekannten genau eine Lösung, man hat also eine „eindeutige Lösung“. Nun hat man ...
LGS lösen: eindeutige Lösung mit Gauß-Verfahren, Beispiel 2 | M.02.01
Um die Lösung eines LGS zu erhalten (sprich: den Lösungsvektor), wendet man natürlich das Gauß-Verfahren an. Wenn man bei einem Gleichungssystem genau so viele Gleichungen hat wie Unbekannte und NACH dem Gauß-Verfahren nirgends in der Diagonale eine Null steht, erhält man für jede der Unbekannten genau eine Lösung, man hat also eine „eindeutige Lösung“. Nun hat man ...
LGS lösen: eindeutige Lösung mit Gauß-Verfahren, Beispiel 1 | M.02.01
Um die Lösung eines LGS zu erhalten (sprich: den Lösungsvektor), wendet man natürlich das Gauß-Verfahren an. Wenn man bei einem Gleichungssystem genau so viele Gleichungen hat wie Unbekannte und NACH dem Gauß-Verfahren nirgends in der Diagonale eine Null steht, erhält man für jede der Unbekannten genau eine Lösung, man hat also eine „eindeutige Lösung“. Nun hat man ...
Gauß-Verfahren: Lineares Gleichungssystem lösen | M.02
Das gängigste Lösungsverfahren für ein Lineares Gleichungssystem ist das Gauß-Verfahren. Dafür stellt man sich die Diagonale des LGS vor und multipliziert und verrechnet nun die Gleichungen derart, dass man unter der Diagonalen nur noch Nullen hat. Nun kann man die Lösungen von „x1“, „x2“, „x3“, .. bestimmen, welche zusammen den Lösungsvektor ...
Schnittmenge berechnen, Schnittpunkt, Schnittgerade | V.02
Eine Schnittmenge zu berechnen, bedeutet Geraden und Ebenen auf Schnittpunkte und Schnittgeraden zu überprüfen. Dieses nennt man auch „gegenseitige Lage“ bestimmen. Wichtig sind gegenseitige Lage von zwei Geraden, gegenseitige Lage einer Gerade mit einer Ebene und die gegenseitige Lage zweier Ebenen. Die gesuchten Lösungen (bzw. den Lösungsvektor) berechnet man immer ...