Kürzen und erweitern - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Kürzen und erweitern - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Video: Kürzen und Erweitern von Bruchtermen
In diesem YouTube-Video wird zunächst erklärt, was ein Bruchterm ist. Auch die einschränkenden Bedingungen (keine Division durch Null) werden herausgearbeitet. Schließlich wird das Kürzen und Erweitern anhand von Beispielen eingeübt.
Brüche kürzen und erweitern
Beim Erweitern und Kürzen von Brüchen nutzt man die Tatsache, dass sich der Wert eines Bruches nicht ändert, wenn Nenner und Zähler mit der gleichen Zahl multipliziert oder dividiert werden.
Interaktive Übung: Kürzen und Erweitern von Brüchen
Mithilfe dieser interaktiven Übungen festigen die Schülerinnen und Schüler ihr Wissen zum Kürzen und Erweitern von Brüchen. Die verschiedenen Übungsformate können an Computern, Tablets oder an Smartphones eingesetzt werden.
Brüche kürzen: so kürzt man einen Bruch | B.02.01
Um einen Bruch zu kürzen, muss man Zähler und Nenner (oben und unten) durch die gleiche Zahl teilen. Mit dieser Rechenregel kann man Brüche also vereinfachen, (man hat oben und unten kleinere Zahlen), der Bruch wird dadurch handlicher.
Brüche kürzen: so kürzt man einen Bruch, Beispiel 4 | B.02.01
Um einen Bruch zu kürzen, muss man Zähler und Nenner (oben und unten) durch die gleiche Zahl teilen. Mit dieser Rechenregel kann man Brüche also vereinfachen, (man hat oben und unten kleinere Zahlen), der Bruch wird dadurch handlicher.
Brüche kürzen: so kürzt man einen Bruch, Beispiel 3 | B.02.01
Um einen Bruch zu kürzen, muss man Zähler und Nenner (oben und unten) durch die gleiche Zahl teilen. Mit dieser Rechenregel kann man Brüche also vereinfachen, (man hat oben und unten kleinere Zahlen), der Bruch wird dadurch handlicher.
Brüche kürzen: so kürzt man einen Bruch, Beispiel 2 | B.02.01
Um einen Bruch zu kürzen, muss man Zähler und Nenner (oben und unten) durch die gleiche Zahl teilen. Mit dieser Rechenregel kann man Brüche also vereinfachen, (man hat oben und unten kleinere Zahlen), der Bruch wird dadurch handlicher.
Brüche kürzen: so kürzt man einen Bruch, Beispiel 5 | B.02.01
Um einen Bruch zu kürzen, muss man Zähler und Nenner (oben und unten) durch die gleiche Zahl teilen. Mit dieser Rechenregel kann man Brüche also vereinfachen, (man hat oben und unten kleinere Zahlen), der Bruch wird dadurch handlicher.
Brüche kürzen: so kürzt man einen Bruch, Beispiel 1 | B.02.01
Um einen Bruch zu kürzen, muss man Zähler und Nenner (oben und unten) durch die gleiche Zahl teilen. Mit dieser Rechenregel kann man Brüche also vereinfachen, (man hat oben und unten kleinere Zahlen), der Bruch wird dadurch handlicher.
Brüche kürzen: so kürzt man einen Bruch, Beispiel 6 | B.02.01
Um einen Bruch zu kürzen, muss man Zähler und Nenner (oben und unten) durch die gleiche Zahl teilen. Mit dieser Rechenregel kann man Brüche also vereinfachen, (man hat oben und unten kleinere Zahlen), der Bruch wird dadurch handlicher.