Input-Output - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Input-Output - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Input-Output berechnen mit der Input-Output-Matrix, Beispiel 2 | M.06.01
Üblicherweise hat man eine Input-Output-Matrix gegeben. Um daraus die Input-Matrix zu erhalten, teilt man die komplette erste Spalte durch den ersten Eintrag der Produktionsmenge. Die zweite Spalte teilt man durch den zweiten Eintrag des Produktionsvektors. Die dritte Spalte teilt man durch den dritten Eintrag der Produktionsmenge. Das war´s auch schon. Mit Hilfe der ...
Input-Output berechnen mit der Input-Output-Matrix, Beispiel 1 | M.06.01
Üblicherweise hat man eine Input-Output-Matrix gegeben. Um daraus die Input-Matrix zu erhalten, teilt man die komplette erste Spalte durch den ersten Eintrag der Produktionsmenge. Die zweite Spalte teilt man durch den zweiten Eintrag des Produktionsvektors. Die dritte Spalte teilt man durch den dritten Eintrag der Produktionsmenge. Das war´s auch schon. Mit Hilfe der ...
Input-Output berechnen mit der Input-Output-Matrix | M.06.01
Üblicherweise hat man eine Input-Output-Matrix gegeben. Um daraus die Input-Matrix zu erhalten, teilt man die komplette erste Spalte durch den ersten Eintrag der Produktionsmenge. Die zweite Spalte teilt man durch den zweiten Eintrag des Produktionsvektors. Die dritte Spalte teilt man durch den dritten Eintrag der Produktionsmenge. Das war´s auch schon. Mit Hilfe der ...
Statistisches Bundesamt: Volkswirtschaftliche Gesamtrechnungen
Das Statistische Bundesamt (Wiesbaden) veröffentlicht hier u. a. grundlegende Informationen sowie aktuelle Zahlen zum Bruttoinlandsprodukt, zur Input-Output- und zur Vermögensrechnung.
Statistisches Bundesamt: Volkswirtschaftliche Gesamtrechnungen
Das Statistische Bundesamt (Wiesbaden) veröffentlicht hier u. a. grundlegende Informationen sowie aktuelle Zahlen zum Bruttoinlandsprodukt, zur Input-Output- und zur Vermögensrechnung (2020).
Leontief: schwierige Aufgabe mit Gozintograph und Input-Matrix, Teil c | M.06.03
Eine Leontief–Aufgabe, die einfach beginnt und komplex endet. Zuerst haben wir eine Grafik (die „Gozintograph“ heißt). Daraus erstellen wir eine Input-Output-Tabelle, aus welcher wir wiederum die Input-Matrix berechnen. Danach berechnen wir aus einem Marktvektor den Produktionsvektor. In Teilaufgabe 3 haben wir viele verschiedene Angaben, aus denen wir dann Kosten und ...
Leontief: schwierige Aufgabe mit Gozintograph und Input-Matrix | M.06.03
Eine Leontief–Aufgabe, die einfach beginnt und komplex endet. Zuerst haben wir eine Grafik (die „Gozintograph“ heißt). Daraus erstellen wir eine Input-Output-Tabelle, aus welcher wir wiederum die Input-Matrix berechnen. Danach berechnen wir aus einem Marktvektor den Produktionsvektor. In Teilaufgabe 3 haben wir viele verschiedene Angaben, aus denen wir dann Kosten und ...
Leontief: schwierige Aufgabe mit Gozintograph und Input-Matrix, Teil a | M.06.03
Eine Leontief–Aufgabe, die einfach beginnt und komplex endet. Zuerst haben wir eine Grafik (die „Gozintograph“ heißt). Daraus erstellen wir eine Input-Output-Tabelle, aus welcher wir wiederum die Input-Matrix berechnen. Danach berechnen wir aus einem Marktvektor den Produktionsvektor. In Teilaufgabe 3 haben wir viele verschiedene Angaben, aus denen wir dann Kosten und ...
Leontief: schwierige Aufgabe mit Gozintograph und Input-Matrix, Teil b | M.06.03
Eine Leontief–Aufgabe, die einfach beginnt und komplex endet. Zuerst haben wir eine Grafik (die „Gozintograph“ heißt). Daraus erstellen wir eine Input-Output-Tabelle, aus welcher wir wiederum die Input-Matrix berechnen. Danach berechnen wir aus einem Marktvektor den Produktionsvektor. In Teilaufgabe 3 haben wir viele verschiedene Angaben, aus denen wir dann Kosten und ...
Leontief: schwierige Aufgabe mit Gozintograph und Input-Matrix, Teil d | M.06.03
Eine Leontief–Aufgabe, die einfach beginnt und komplex endet. Zuerst haben wir eine Grafik (die „Gozintograph“ heißt). Daraus erstellen wir eine Input-Output-Tabelle, aus welcher wir wiederum die Input-Matrix berechnen. Danach berechnen wir aus einem Marktvektor den Produktionsvektor. In Teilaufgabe 3 haben wir viele verschiedene Angaben, aus denen wir dann Kosten und ...