Höhere Ordnung - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen
Gleichungen höherer Ordnung lösen | G.05
Es gibt auf der Welt überhaupt nur vier (nennenswerte) Lösungsverfahren um Gleichungen zu lösen. Das Geschickteste ist immer das Ausklammern (falls das geht) (s.Kap. G.04.04 oder G.05.01). Bei quadratischen Gleichungen wendet man die p-q-Formel bzw. a-b-c-Formel an. Höhere Gleichungen (also Gleichung die eine höhere Ordnung bzw. höhere Potenz haben) kann man mit den ...
DGL höherer Ordnung über charakteristisches Polynom lösen, Beispiel 2 | A.53.04
Bei einer homogenen DGL höherer Ordnung sind die Lösungen des charakteristischen Polynoms entscheidend. Das charakteristische Polynom erhält man, in dem man in der DGL f' durch x ersetzt, f'' durch x^2, f''' durch x^3, usw. Diese Gleichung löst man (oft nicht einfach) und betrachtet die Lösungen. Der Lösungsansatz hängt von zwei Faktoren ...
DGL höherer Ordnung über charakteristisches Polynom lösen, Beispiel 1 | A.53.04
Bei einer homogenen DGL höherer Ordnung sind die Lösungen des charakteristischen Polynoms entscheidend. Das charakteristische Polynom erhält man, in dem man in der DGL f' durch x ersetzt, f'' durch x^2, f''' durch x^3, usw. Diese Gleichung löst man (oft nicht einfach) und betrachtet die Lösungen. Der Lösungsansatz hängt von zwei Faktoren ...
DGL höherer Ordnung über charakteristisches Polynom lösen | A.53.04
Bei einer homogenen DGL höherer Ordnung sind die Lösungen des charakteristischen Polynoms entscheidend. Das charakteristische Polynom erhält man, in dem man in der DGL f' durch x ersetzt, f'' durch x^2, f''' durch x^3, usw. Diese Gleichung löst man (oft nicht einfach) und betrachtet die Lösungen. Der Lösungsansatz hängt von zwei Faktoren ...
DGL höherer Ordnung über charakteristisches Polynom lösen, Beispiel 3 | A.53.04
Bei einer homogenen DGL höherer Ordnung sind die Lösungen des charakteristischen Polynoms entscheidend. Das charakteristische Polynom erhält man, in dem man in der DGL f' durch x ersetzt, f'' durch x^2, f''' durch x^3, usw. Diese Gleichung löst man (oft nicht einfach) und betrachtet die Lösungen. Der Lösungsansatz hängt von zwei Faktoren ...
Inhomogene Differentialgleichung über partikuläre Lösung lösen, Beispiel 4 | A.53.05
Bei einer inhomogenen DGL höherer Ordnung macht man zwei Schritte (beide sind lang). Im ersten Schritt löst man die zugehörige homogene DGL. Die zugehörige Lösung ist der erste Teil der Gesamtlösung. Im zweiten Schritt versucht man die spezielle Lösung oder partikuläre Lösung zu finden. Diese ist meistens vom gleichen Typ, wie die Störfunktion. (Die ...
Inhomogene Differentialgleichung über partikuläre Lösung lösen, Beispiel 2 | A.53.05
Bei einer inhomogenen DGL höherer Ordnung macht man zwei Schritte (beide sind lang). Im ersten Schritt löst man die zugehörige homogene DGL. Die zugehörige Lösung ist der erste Teil der Gesamtlösung. Im zweiten Schritt versucht man die spezielle Lösung oder partikuläre Lösung zu finden. Diese ist meistens vom gleichen Typ, wie die Störfunktion. (Die ...
Inhomogene Differentialgleichung über partikuläre Lösung lösen, Beispiel 5 | A.53.05
Bei einer inhomogenen DGL höherer Ordnung macht man zwei Schritte (beide sind lang). Im ersten Schritt löst man die zugehörige homogene DGL. Die zugehörige Lösung ist der erste Teil der Gesamtlösung. Im zweiten Schritt versucht man die spezielle Lösung oder partikuläre Lösung zu finden. Diese ist meistens vom gleichen Typ, wie die Störfunktion. (Die ...
Inhomogene Differentialgleichung über partikuläre Lösung lösen, Beispiel 1 | A.53.05
Bei einer inhomogenen DGL höherer Ordnung macht man zwei Schritte (beide sind lang). Im ersten Schritt löst man die zugehörige homogene DGL. Die zugehörige Lösung ist der erste Teil der Gesamtlösung. Im zweiten Schritt versucht man die spezielle Lösung oder partikuläre Lösung zu finden. Diese ist meistens vom gleichen Typ, wie die Störfunktion. (Die ...
Inhomogene Differentialgleichung über partikuläre Lösung lösen | A.53.05
Bei einer inhomogenen DGL höherer Ordnung macht man zwei Schritte (beide sind lang). Im ersten Schritt löst man die zugehörige homogene DGL. Die zugehörige Lösung ist der erste Teil der Gesamtlösung. Im zweiten Schritt versucht man die spezielle Lösung oder partikuläre Lösung zu finden. Diese ist meistens vom gleichen Typ, wie die Störfunktion. (Die ...
Quelle
Systematik
Schlagwörter
- Höhere Ordnung (11)
- Koeffizient (11)
- Differenzialgleichung (11)
- Differentialgleichung (11)
- Parameter (11)
- Variable (11)
- Ableitung (11)