Häufigkeit - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Häufigkeit - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Relative Häufigkeit, absolute Häufigkeit und wie man richtig damit rechnet; Beispiel 1 | W.11.02
Eine absolute Häufigkeit ist eine Anzahl (also eine ganze Zahl wie 0; 1; 2; ). Eine relative Häufigkeit ist eine Prozentzahl (also eine Kommazahl zwischen 0 und 1, bzw. in Prozent gerechnet: zwischen 0% und 100%). Eine kumulierte Häufigkeit (egal ob relativ oder absolut) ist eine aufsummierte Häufigkeit, beinhaltet also die Häufigkeiten von allen Werten die kleiner oder ...
Relative Häufigkeit, absolute Häufigkeit und wie man sie richtig berechnet | W.11.02
Eine absolute Häufigkeit ist eine Anzahl (also eine ganze Zahl wie 0; 1; 2; ). Eine relative Häufigkeit ist eine Prozentzahl (also eine Kommazahl zwischen 0 und 1, bzw. in Prozent gerechnet: zwischen 0% und 100%). Eine kumulierte Häufigkeit (egal ob relativ oder absolut) ist eine aufsummierte Häufigkeit, beinhaltet also die Häufigkeiten von allen Werten die kleiner oder ...
Relative Häufigkeit, absolute Häufigkeit und wie man richtig damit rechnet; Beispiel 2 | W.11.02
Eine absolute Häufigkeit ist eine Anzahl (also eine ganze Zahl wie 0; 1; 2; ). Eine relative Häufigkeit ist eine Prozentzahl (also eine Kommazahl zwischen 0 und 1, bzw. in Prozent gerechnet: zwischen 0% und 100%). Eine kumulierte Häufigkeit (egal ob relativ oder absolut) ist eine aufsummierte Häufigkeit, beinhaltet also die Häufigkeiten von allen Werten die kleiner oder ...
Relative Häufigkeit
Während die absolute Häufigkeit angibt, wie oft ein bestimmtes Ereignis eintritt (Anzahl), beschreibt die relative Häufigkeit, wie groß der Anteil der absoluten Häufigkeit an der Gesamtzahl der Versuche ist. Dies ist eine Methode Wahrscheinlichkeiten praktisch zu bestimmen.
ZUM-Lernpfad: Relative Häufigkeit und das Gesetz der großen Zahlen
In diesem Lernpfad von zum.de wird sehr schülernah und sehr anschaulich erklärt, wie man die relative Häufigkeit berechnet und was das empirische Gesetz der großen Zahlen bedeutet.
Absolute Häufigkeit
Die absolute Häufigkeit gibt an, wie oft bei einem Experiment ein bestimmtes Ereignis eintritt. Als Anzahl ist sie immer eine natürliche Zahl zwischen Null und der Gesamtzahl von Versuchen.
Additionssatz, Beispiel 3 | Wahrscheinlichkeitsrechnung Formeln W.15.01
Der Additionssatz sagt im Wesentlichen aus, dass man nichts doppelt rechnen darf. Konkret heißt das: Die Häufigkeit der Vereinigung zweier Mengen, bestimmt man über die Summe der Häufigkeit von beiden Mengen, abzüglich der Schnittmenge beider Mengen. == P(AUB)=P(A)+P(B)-P(A?B)
Additionssatz, Beispiel 1 | Wahrscheinlichkeitsrechnung Formeln W.15.01
Der Additionssatz sagt im Wesentlichen aus, dass man nichts doppelt rechnen darf. Konkret heißt das: Die Häufigkeit der Vereinigung zweier Mengen, bestimmt man über die Summe der Häufigkeit von beiden Mengen, abzüglich der Schnittmenge beider Mengen. == P(AUB)=P(A)+P(B)-P(A?B)
Additionssatz, Beispiel 2 | Wahrscheinlichkeitsrechnung Formeln W.15.01
Der Additionssatz sagt im Wesentlichen aus, dass man nichts doppelt rechnen darf. Konkret heißt das: Die Häufigkeit der Vereinigung zweier Mengen, bestimmt man über die Summe der Häufigkeit von beiden Mengen, abzüglich der Schnittmenge beider Mengen. == P(AUB)=P(A)+P(B)-P(A?B)
Additionssatz | Wahrscheinlichkeitsrechnung Formeln W.15.01
Der Additionssatz sagt im Wesentlichen aus, dass man nichts doppelt rechnen darf. Konkret heißt das: Die Häufigkeit der Vereinigung zweier Mengen, bestimmt man über die Summe der Häufigkeit von beiden Mengen, abzüglich der Schnittmenge beider Mengen. == P(AUB)=P(A)+P(B)-P(A?B)