Funktionstyp - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen
Waagrechte Asymptote und schiefe Asymptote berechnen, Beispiel 2 | A.16.02
Waagerechte Asymptoten bzw. schiefe Asymptoten erhält man, in dem man x in der Funktion gegen + oder unendlich streben lässt. Wie das im Detail geht, hängt vom Funktionstyp ab. (Siehe daher bitte auf Querverweise auf die verschiedenen Funktionen unter verwandte Themen).
Waagrechte Asymptote und schiefe Asymptote berechnen, Beispiel 6 | A.16.02
Waagerechte Asymptoten bzw. schiefe Asymptoten erhält man, in dem man x in der Funktion gegen + oder unendlich streben lässt. Wie das im Detail geht, hängt vom Funktionstyp ab. (Siehe daher bitte auf Querverweise auf die verschiedenen Funktionen unter verwandte Themen).
Waagrechte Asymptote und schiefe Asymptote berechnen, Beispiel 1 | A.16.02
Waagerechte Asymptoten bzw. schiefe Asymptoten erhält man, in dem man x in der Funktion gegen + oder unendlich streben lässt. Wie das im Detail geht, hängt vom Funktionstyp ab. (Siehe daher bitte auf Querverweise auf die verschiedenen Funktionen unter verwandte Themen).
Parabel, Hyperbel, Exponentialfunktion: wie man mit verschiedenen Funktionstypen rechnet | A.06
Von manchen Funktionstypen werden schon recht früh diverse Gesichtspunkte betrachtet. Von Parabeln (ganzrationale Funktionen), Hyperbeln und Exponentialfunktionen sind an dieser Stelle hauptsächlich Grenzwertbetrachtungen relevant (Limes) und das ungefähre Aussehen dieser Funktionen im Koordinatensystem. Dazu noch ein paar andere Kleinigkeiten.
Waagrechte Asymptote und schiefe Asymptote berechnen, Beispiel 5 | A.16.02
Waagerechte Asymptoten bzw. schiefe Asymptoten erhält man, in dem man x in der Funktion gegen + oder unendlich streben lässt. Wie das im Detail geht, hängt vom Funktionstyp ab. (Siehe daher bitte auf Querverweise auf die verschiedenen Funktionen unter verwandte Themen).
Waagrechte Asymptote und schiefe Asymptote berechnen, Beispiel 3 | A.16.02
Waagerechte Asymptoten bzw. schiefe Asymptoten erhält man, in dem man x in der Funktion gegen + oder unendlich streben lässt. Wie das im Detail geht, hängt vom Funktionstyp ab. (Siehe daher bitte auf Querverweise auf die verschiedenen Funktionen unter verwandte Themen).
Waagrechte Asymptote und schiefe Asymptote berechnen | A.16.02
Waagerechte Asymptoten bzw. schiefe Asymptoten erhält man, in dem man x in der Funktion gegen + oder unendlich streben lässt. Wie das im Detail geht, hängt vom Funktionstyp ab. (Siehe daher bitte auf Querverweise auf die verschiedenen Funktionen unter verwandte Themen).
Waagrechte Asymptote und schiefe Asymptote berechnen, Beispiel 4 | A.16.02
Waagerechte Asymptoten bzw. schiefe Asymptoten erhält man, in dem man x in der Funktion gegen + oder unendlich streben lässt. Wie das im Detail geht, hängt vom Funktionstyp ab. (Siehe daher bitte auf Querverweise auf die verschiedenen Funktionen unter verwandte Themen).
Ableitung f(x) einer Funktion | A.13
Die Ableitung einer Funktion f(x) gibt die Steigung bzw. die Tangentensteigung an. Bei anwendungsbezogenen Aufgaben ist die Ableitung die Zunahme bzw. die Abnahme (je nach Vorzeichen). Es gibt drei wichtige Regeln für die Ableitung: Kettenregel, Quotientenregel, Produktregel. Mit allen kann man ableiten. Fast jeder Funktionstyp hat eine andere Ableitungsregel, d.h. man muss ...
Stammfunktion, Integral und wie man damit rechnet | A.14
Die Stammfunktion einer Funktion braucht man, um diverse Flächen zu berechnen. Bei anwendungsbezogenen Aufgaben ist Stammfunktion meist eine Gesamtmenge (z.B. wenn f(x) die Anzahl von Würstchen beschreibt, die eine Imbissbude verkauft, ist die Stammfunktion die Gesamtanzahl aller Würstchen vom Zeitpunkt A bis zum Zeitpunkt B). Fast jeder Funktionstyp hat andere Regeln zur ...
Quelle
Systematik
- Mathematik (12)
- Mathematisch-Naturwissenschaftliche Fächer (12)
- Zahlen (1)
- Fächerübergreifende Themen (1)
- Fachdidaktik (1)
- Grundschule (1)
Schlagwörter
- Analysis (12)
- Funktion (Mathematik) (11)
- E-Learning (11)
- Video (11)
- Gerade (Mathematik) (10)
- Exponentialfunktion (10)
- Bruchrechnung (8)