Funktion (Mathematik) - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen
Injektiv, surjektiv, bijektiv: wie oft wird der y-Wert einer Funktion angenommen | A.52.04
Bei Injektivität, Surjektivität und Bijektivität interessiert man sich dafür, wie oft die y-Werte einer Funktion (oder Abbildung) angenommen werden. Wird jeder y-Wert der Funktion höchstens einmal angenommen (also einmal oder keinmal) nennt man die Funktion injektiv (auch linkseindeutig oder linkstotal). Wird jeder y-Wert der Funktion mindestens einmal angenommen (also ...
Injektiv, surjektiv, bijektiv: wie oft wird der y-Wert einer Funktion angenommen, Beispiel 1
Bei Injektivität, Surjektivität und Bijektivität interessiert man sich dafür, wie oft die y-Werte einer Funktion (oder Abbildung) angenommen werden. Wird jeder y-Wert der Funktion höchstens einmal angenommen (also einmal oder keinmal) nennt man die Funktion injektiv (auch linkseindeutig oder linkstotal). Wird jeder y-Wert der Funktion mindestens einmal angenommen (also ...
Injektiv, surjektiv, bijektiv: wie oft wird der y-Wert einer Funktion angenommen, Beispiel 2
Bei Injektivität, Surjektivität und Bijektivität interessiert man sich dafür, wie oft die y-Werte einer Funktion (oder Abbildung) angenommen werden. Wird jeder y-Wert der Funktion höchstens einmal angenommen (also einmal oder keinmal) nennt man die Funktion injektiv (auch linkseindeutig oder linkstotal). Wird jeder y-Wert der Funktion mindestens einmal angenommen (also ...
Injektiv, surjektiv, bijektiv: wie oft wird der y-Wert einer Funktion angenommen, Beispiel 6
Bei Injektivität, Surjektivität und Bijektivität interessiert man sich dafür, wie oft die y-Werte einer Funktion (oder Abbildung) angenommen werden. Wird jeder y-Wert der Funktion höchstens einmal angenommen (also einmal oder keinmal) nennt man die Funktion injektiv (auch linkseindeutig oder linkstotal). Wird jeder y-Wert der Funktion mindestens einmal angenommen (also ...
Injektiv, surjektiv, bijektiv: wie oft wird der y-Wert einer Funktion angenommen, Beispiel 5
Bei Injektivität, Surjektivität und Bijektivität interessiert man sich dafür, wie oft die y-Werte einer Funktion (oder Abbildung) angenommen werden. Wird jeder y-Wert der Funktion höchstens einmal angenommen (also einmal oder keinmal) nennt man die Funktion injektiv (auch linkseindeutig oder linkstotal). Wird jeder y-Wert der Funktion mindestens einmal angenommen (also ...
Injektiv, surjektiv, bijektiv: wie oft wird der y-Wert einer Funktion angenommen, Beispiel 4
Bei Injektivität, Surjektivität und Bijektivität interessiert man sich dafür, wie oft die y-Werte einer Funktion (oder Abbildung) angenommen werden. Wird jeder y-Wert der Funktion höchstens einmal angenommen (also einmal oder keinmal) nennt man die Funktion injektiv (auch linkseindeutig oder linkstotal). Wird jeder y-Wert der Funktion mindestens einmal angenommen (also ...
Injektiv, surjektiv, bijektiv: wie oft wird der y-Wert einer Funktion angenommen, Beispiel 3
Bei Injektivität, Surjektivität und Bijektivität interessiert man sich dafür, wie oft die y-Werte einer Funktion (oder Abbildung) angenommen werden. Wird jeder y-Wert der Funktion höchstens einmal angenommen (also einmal oder keinmal) nennt man die Funktion injektiv (auch linkseindeutig oder linkstotal). Wird jeder y-Wert der Funktion mindestens einmal angenommen (also ...
Kubische Funktion, Funktionsanalyse / Kurvendiskussion, Beispiel 2a: wir zeichnen die Funktion
Wir betrachten eine kubische Funktion und machen davon eine Funktionsuntersuchung (=Kurvendiskussion). Wir berechnen die Nullstellen, Hoch-, Tief- und Wendepunkte, machen eine Skizze der Funktion und lassen dadurch die kosmische Energie des Universums eine Entspannung unseres Seelenzustands bewirken.
Quelle
- Bildungsmediathek NRW (1095)
- Deutscher Bildungsserver (97)
- Lehrer-Online (33)
- Bildungsserver Hessen (21)
- Sächsischer Bildungsserver (13)
- Select Hessen (10)
- Handwerk macht Schule (4)
- Elixier Community (3)
- Landesbildungsserver Berlin-Brandenburg (2)
- Serlo (1)
Systematik
- Mathematik (1262)
- Mathematisch-Naturwissenschaftliche Fächer (1261)
- Zuordnungen, Funktionen (93)
- Fächerübergreifende Themen (36)
- Grundschule (27)
- Zahlen (23)
- Differentialrechnung (22)
Schlagwörter
- Video (1052)
- Funktion (Mathematik) (1049)
- E-Learning (1043)
- Analysis (1027)
- Koordinate (383)
- Ableitung (372)
- Gleichung (Mathematik) (369)
Bildungsebene
Lernressourcentyp
- Arbeitsblatt (83)
- Unterrichtsplanung (27)
- Arbeitsmaterial (16)
- Lernkontrolle (14)
- Video/animation (11)
- Interaktives Material (9)
- Kurs (2)