Funktion+(Mathematik) - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen
Injektiv, surjektiv, bijektiv: wie oft wird der y-Wert einer Funktion angenommen, Beispiel 2
Bei Injektivität, Surjektivität und Bijektivität interessiert man sich dafür, wie oft die y-Werte einer Funktion (oder Abbildung) angenommen werden. Wird jeder y-Wert der Funktion höchstens einmal angenommen (also einmal oder keinmal) nennt man die Funktion injektiv (auch linkseindeutig oder linkstotal). Wird jeder y-Wert der Funktion mindestens einmal angenommen (also ...
Injektiv, surjektiv, bijektiv: wie oft wird der y-Wert einer Funktion angenommen, Beispiel 5
Bei Injektivität, Surjektivität und Bijektivität interessiert man sich dafür, wie oft die y-Werte einer Funktion (oder Abbildung) angenommen werden. Wird jeder y-Wert der Funktion höchstens einmal angenommen (also einmal oder keinmal) nennt man die Funktion injektiv (auch linkseindeutig oder linkstotal). Wird jeder y-Wert der Funktion mindestens einmal angenommen (also ...
Injektiv, surjektiv, bijektiv: wie oft wird der y-Wert einer Funktion angenommen, Beispiel 3
Bei Injektivität, Surjektivität und Bijektivität interessiert man sich dafür, wie oft die y-Werte einer Funktion (oder Abbildung) angenommen werden. Wird jeder y-Wert der Funktion höchstens einmal angenommen (also einmal oder keinmal) nennt man die Funktion injektiv (auch linkseindeutig oder linkstotal). Wird jeder y-Wert der Funktion mindestens einmal angenommen (also ...
Injektiv, surjektiv, bijektiv: wie oft wird der y-Wert einer Funktion angenommen, Beispiel 4
Bei Injektivität, Surjektivität und Bijektivität interessiert man sich dafür, wie oft die y-Werte einer Funktion (oder Abbildung) angenommen werden. Wird jeder y-Wert der Funktion höchstens einmal angenommen (also einmal oder keinmal) nennt man die Funktion injektiv (auch linkseindeutig oder linkstotal). Wird jeder y-Wert der Funktion mindestens einmal angenommen (also ...
Injektiv, surjektiv, bijektiv: wie oft wird der y-Wert einer Funktion angenommen, Beispiel 6
Bei Injektivität, Surjektivität und Bijektivität interessiert man sich dafür, wie oft die y-Werte einer Funktion (oder Abbildung) angenommen werden. Wird jeder y-Wert der Funktion höchstens einmal angenommen (also einmal oder keinmal) nennt man die Funktion injektiv (auch linkseindeutig oder linkstotal). Wird jeder y-Wert der Funktion mindestens einmal angenommen (also ...
Injektiv, surjektiv, bijektiv: wie oft wird der y-Wert einer Funktion angenommen | A.52.04
Bei Injektivität, Surjektivität und Bijektivität interessiert man sich dafür, wie oft die y-Werte einer Funktion (oder Abbildung) angenommen werden. Wird jeder y-Wert der Funktion höchstens einmal angenommen (also einmal oder keinmal) nennt man die Funktion injektiv (auch linkseindeutig oder linkstotal). Wird jeder y-Wert der Funktion mindestens einmal angenommen (also ...
Injektiv, surjektiv, bijektiv: wie oft wird der y-Wert einer Funktion angenommen, Beispiel 1
Bei Injektivität, Surjektivität und Bijektivität interessiert man sich dafür, wie oft die y-Werte einer Funktion (oder Abbildung) angenommen werden. Wird jeder y-Wert der Funktion höchstens einmal angenommen (also einmal oder keinmal) nennt man die Funktion injektiv (auch linkseindeutig oder linkstotal). Wird jeder y-Wert der Funktion mindestens einmal angenommen (also ...
Kubische Funktion, Funktionsanalyse / Kurvendiskussion, Beispiel 2a: wir zeichnen die Funktion
Wir betrachten eine kubische Funktion und machen davon eine Funktionsuntersuchung (=Kurvendiskussion). Wir berechnen die Nullstellen, Hoch-, Tief- und Wendepunkte, machen eine Skizze der Funktion und lassen dadurch die kosmische Energie des Universums eine Entspannung unseres Seelenzustands bewirken.
Quelle
- Bildungsmediathek NRW (4196)
- Bildungsserver Hessen (1185)
- Deutscher Bildungsserver (1019)
- Lehrer-Online (773)
- Select Hessen (168)
- Mauswiesel Hessen (110)
- Handwerk macht Schule (56)
- MELT (55)
- Elixier Community (51)
- Landesbildungsserver Baden-Württemberg (41)
- Sächsischer Bildungsserver (39)
Systematik
- Mathematik (6989)
- Mathematisch-Naturwissenschaftliche Fächer (5218)
- Grundschule (2623)
- Fächerübergreifende Themen (720)
- Berufliche Bildung (492)
- Physik (469)
- Fächer der Beruflichen Bildung (399)
Schlagwörter
- E-Learning (2550)
- Video (1634)
- Analysis (1329)
- Mathematik (1294)
- Übungsmaterial (1190)
- Lernhilfen (1189)
- Grundrechenart (1182)
Bildungsebene
- Sekundarstufe I (4793)
- Sekundarstufe Ii (2649)
- Primarstufe (2530)
- Berufliche Bildung (207)
- Hochschule (134)
- Elementarbildung (69)
- Spezieller Förderbedarf (55)
Lernressourcentyp
- Simulation (1171)
- Arbeitsblatt (813)
- Unterrichtsplanung (785)
- Arbeitsmaterial (582)
- Lernkontrolle (344)
- Video/animation (299)
- Interaktives Material (190)