Diskriminante - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen
Quadratische Gleichungen mit x und einem weiteren Parameter, Beispiel 3 | G.04.07
Den hässlichsten Fall bei quadratischen Gleichungen hat man, wenn zusätzlich zum x noch ein weiterer Parameter drin steckt (z.B. noch ein t oder so was). Meist heißt die zugehörige Fragestellung dann: Für welche Werte von t hat die Gleichung keine, eine oder zwei Lösungen?. Dazu beginnt man mit der p-q-Formel oder mit der a-b-c-Formel und betrachtet dann ...
Quadratische Gleichungen mit x und einem weiteren Parameter, Beispiel 6 | G.04.07
Den hässlichsten Fall bei quadratischen Gleichungen hat man, wenn zusätzlich zum x noch ein weiterer Parameter drin steckt (z.B. noch ein t oder so was). Meist heißt die zugehörige Fragestellung dann: Für welche Werte von t hat die Gleichung keine, eine oder zwei Lösungen?. Dazu beginnt man mit der p-q-Formel oder mit der a-b-c-Formel und betrachtet dann ...
Quadratische Gleichungen mit x und einem weiteren Parameter, Beispiel 4 | G.04.07
Den hässlichsten Fall bei quadratischen Gleichungen hat man, wenn zusätzlich zum x noch ein weiterer Parameter drin steckt (z.B. noch ein t oder so was). Meist heißt die zugehörige Fragestellung dann: Für welche Werte von t hat die Gleichung keine, eine oder zwei Lösungen?. Dazu beginnt man mit der p-q-Formel oder mit der a-b-c-Formel und betrachtet dann ...
Quadratische Gleichungen mit x und einem weiteren Parameter, Beispiel 2 | G.04.07
Den hässlichsten Fall bei quadratischen Gleichungen hat man, wenn zusätzlich zum x noch ein weiterer Parameter drin steckt (z.B. noch ein t oder so was). Meist heißt die zugehörige Fragestellung dann: Für welche Werte von t hat die Gleichung keine, eine oder zwei Lösungen?. Dazu beginnt man mit der p-q-Formel oder mit der a-b-c-Formel und betrachtet dann ...
Quadratische Gleichungen mit x und einem weiteren Parameter, Beispiel 5 | G.04.07
Den hässlichsten Fall bei quadratischen Gleichungen hat man, wenn zusätzlich zum x noch ein weiterer Parameter drin steckt (z.B. noch ein t oder so was). Meist heißt die zugehörige Fragestellung dann: Für welche Werte von t hat die Gleichung keine, eine oder zwei Lösungen?. Dazu beginnt man mit der p-q-Formel oder mit der a-b-c-Formel und betrachtet dann ...
Quadratische Gleichungen mit x und einem weiteren Parameter | G.04.07
Den hässlichsten Fall bei quadratischen Gleichungen hat man, wenn zusätzlich zum x noch ein weiterer Parameter drin steckt (z.B. noch ein t oder so was). Meist heißt die zugehörige Fragestellung dann: Für welche Werte von t hat die Gleichung keine, eine oder zwei Lösungen?. Dazu beginnt man mit der p-q-Formel oder mit der a-b-c-Formel und betrachtet dann ...
Quadratische Gleichungen mit x und einem weiteren Parameter, Beispiel 1 | G.04.07
Den hässlichsten Fall bei quadratischen Gleichungen hat man, wenn zusätzlich zum x noch ein weiterer Parameter drin steckt (z.B. noch ein t oder so was). Meist heißt die zugehörige Fragestellung dann: Für welche Werte von t hat die Gleichung keine, eine oder zwei Lösungen?. Dazu beginnt man mit der p-q-Formel oder mit der a-b-c-Formel und betrachtet dann ...
Mitternachtsformel, a-b-c-Formel, Beispiel 2 | A.12.04
Mit der Mitternachtsformel (a-b-c Formel oder auch Lösungsformel) kann man eine quadratische Gleichung lösen, wenn man also drei Terme hat: einen mit x², einen mit x und eine Zahl ohne x. Um die abc-Formel anwenden zu können, muss auf einer Seite der Gleichung immer =0 stehen. Je nach dem, ob die Diskriminante (der Term unter der Wurzel) positiv, negativ ...
Mitternachtsformel, a-b-c-Formel, Beispiel 11 | A.12.04
Mit der Mitternachtsformel (a-b-c Formel oder auch Lösungsformel) kann man eine quadratische Gleichung lösen, wenn man also drei Terme hat: einen mit x², einen mit x und eine Zahl ohne x. Um die abc-Formel anwenden zu können, muss auf einer Seite der Gleichung immer =0 stehen. Je nach dem, ob die Diskriminante (der Term unter der Wurzel) positiv, negativ ...
Quelle
Systematik
Schlagwörter
- Formel (Mathematik) (21)
- Gleichung (Mathematik) (21)
- Analysis (21)
- E-Learning (21)
- Video (21)
- Diskriminante (20)
- Wurzel (Mathematik) (13)