Aufleiten - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen
Aussagen zur Stammfunktion treffen anhand des Schaubildes der Ableitung | A.27.04
Gegeben ist das Schaubild einer Ableitungsfunktion. Man muss nun bestimmte Aussagen über die Stammfunktion treffen. Manchmal sind auch ein paar Aussagen gegeben und man muss entscheiden, ob die wahr, falsch oder unentscheidbar sind. Man kann die Stammfunktion SKIZZIEREN (also die Ableitung grafisch aufleiten) oder man denkt ein bisschen um die Ecke.
Polynom bzw. ganzrationale Funktion integrieren; Polynom-Integral bilden | A.14.01
Wie lässt sich ein Polynom ableiten: Polynome (ganzrationale Funktion oder auch Parabeln höherer Ordnung) integriert man (man sagt auch aufleiten) nach einer einfachen Formel. Die Hochzahl wird um eins erhöht, die neue Hochzahl kommt runter in den Nenner(!) und wird mit den eventuell vorhandenen Vorzahlen verrechnet.
Aussagen zur Stammfunktion treffen anhand des Schaubildes der Ableitung, Beispiel 6 | A.27.04
Gegeben ist das Schaubild einer Ableitungsfunktion. Man muss nun bestimmte Aussagen über die Stammfunktion treffen. Manchmal sind auch ein paar Aussagen gegeben und man muss entscheiden, ob die wahr, falsch oder unentscheidbar sind. Man kann die Stammfunktion SKIZZIEREN (also die Ableitung grafisch aufleiten) oder man denkt ein bisschen um die Ecke.
Trigonometrische Funktionen integrieren bzw. aufleiten, Beispiel 1 | A.42.06
Die Stammfunktion von sin ist -cos, die Stammfunktion von cos ist sin. Die innere Ableitung muss (wie bei jeder Integration) in den Nenner (runter), (man wendet also ganz normal die umgekehrte Kettenregel bzw. lineare Substitution an). Für die Stammfunktion F(x) (böse gesagt: die Stammfunktion) kann man daher die Formel anwenden: f(x)=a*e^(bx+c) == ...
Exponentialfunktion integrieren bzw. aufleiten | A.41.05
Das Integrieren von e-Termen läuft ähnlich ab, wie das Ableiten. In der Stammfunktion bleibt der e-Term komplett unverändert, die innere Ableitung (die Ableitung der Hochzahl) wird runter, in den Nenner geschrieben. Man führt also eine umgekehrte Kettenregel an, auch lineare Substitution genannt. Für die Stammfunktion F(x) (böse gesagt: die Aufleitung) kann man daher ...