Exponentialfunktion integrieren bzw. aufleiten | A.41.05
kostenloses Unterrichtsmaterial online bei Elixier
Das Integrieren von e-Termen läuft ähnlich ab, wie das Ableiten. In der Stammfunktion bleibt der e-Term komplett unverändert, die innere Ableitung (die Ableitung der Hochzahl) wird runter, in den Nenner geschrieben. Man führt also eine umgekehrte Kettenregel an, auch lineare Substitution genannt. Für die Stammfunktion F(x) (böse gesagt: die Aufleitung) kann man daher die Formel anwenden: f(x)=a*e^(bx+c) == F(x)=a/b*e^(bx+c).