Abstand von Punkt einer Geraden zu Punkt berechnen - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen
Abstand von Punkt einer Geraden zu Punkt berechnen, Beispiel 2 | V.08.03
Oft sucht man einen Punkt einer Gerade, der eine bestimmte Bedingung erfüllen soll. Z.B. soll dieser Punkt einen ganz bestimmten Abstand zu einem anderen, gegebenen, Punkt haben. Man schreibt dafür die Gerade in Punktform um (der Punkt enthält leider einen Parameter). Diesen Punkt (mit Parameter) nennt man nun laufenden Punkt einer Gerade oder Gerade in ...
Abstand von Punkt einer Geraden zu Punkt berechnen | V.08.03
Oft sucht man einen Punkt einer Gerade, der eine bestimmte Bedingung erfüllen soll. Z.B. soll dieser Punkt einen ganz bestimmten Abstand zu einem anderen, gegebenen, Punkt haben. Man schreibt dafür die Gerade in Punktform um (der Punkt enthält leider einen Parameter). Diesen Punkt (mit Parameter) nennt man nun laufenden Punkt einer Gerade oder Gerade in ...
Abstand von Punkt einer Geraden zu Punkt berechnen, Beispiel 3 | V.08.03
Oft sucht man einen Punkt einer Gerade, der eine bestimmte Bedingung erfüllen soll. Z.B. soll dieser Punkt einen ganz bestimmten Abstand zu einem anderen, gegebenen, Punkt haben. Man schreibt dafür die Gerade in Punktform um (der Punkt enthält leider einen Parameter). Diesen Punkt (mit Parameter) nennt man nun laufenden Punkt einer Gerade oder Gerade in ...
Abstand von Punkt einer Geraden zu Punkt berechnen, Beispiel 1 | V.08.03
Oft sucht man einen Punkt einer Gerade, der eine bestimmte Bedingung erfüllen soll. Z.B. soll dieser Punkt einen ganz bestimmten Abstand zu einem anderen, gegebenen, Punkt haben. Man schreibt dafür die Gerade in Punktform um (der Punkt enthält leider einen Parameter). Diesen Punkt (mit Parameter) nennt man nun laufenden Punkt einer Gerade oder Gerade in ...
Abstand Punkt Gerade berechnen über laufenden Punkt, Beispiel 1 | V.03.03
Den Abstand Punkt-Gerade kann man auf mehrere Arten berechnen. Eine der Möglichkeiten ist der Weg über den laufenden Punkt (oder auch fliegenden Punkt wie es heißt). Man schreibt die Gerade dafür in Punktform um, stellt einen Verbindungsvektor von diesem laufenden Punkt zum Ausgangspunkt auf. Das Skalarprodukt von diesem Verbindungsvektor (mitsamt Parameter) mit dem ...
Abstand Punkt Gerade berechnen über laufenden Punkt, Beispiel 2 | V.03.03
Den Abstand Punkt-Gerade kann man auf mehrere Arten berechnen. Eine der Möglichkeiten ist der Weg über den laufenden Punkt (oder auch fliegenden Punkt wie es heißt). Man schreibt die Gerade dafür in Punktform um, stellt einen Verbindungsvektor von diesem laufenden Punkt zum Ausgangspunkt auf. Das Skalarprodukt von diesem Verbindungsvektor (mitsamt Parameter) mit dem ...
Abstand Punkt Gerade berechnen über laufenden Punkt | V.03.03
Den Abstand Punkt-Gerade kann man auf mehrere Arten berechnen. Eine der Möglichkeiten ist der Weg über den laufenden Punkt (oder auch fliegenden Punkt wie es heißt). Man schreibt die Gerade dafür in Punktform um, stellt einen Verbindungsvektor von diesem laufenden Punkt zum Ausgangspunkt auf. Das Skalarprodukt von diesem Verbindungsvektor (mitsamt Parameter) mit dem ...
Abstand Punkt Gerade berechnen über laufenden Punkt, Beispiel 3 | V.03.03
Den Abstand Punkt-Gerade kann man auf mehrere Arten berechnen. Eine der Möglichkeiten ist der Weg über den laufenden Punkt (oder auch fliegenden Punkt wie es heißt). Man schreibt die Gerade dafür in Punktform um, stellt einen Verbindungsvektor von diesem laufenden Punkt zum Ausgangspunkt auf. Das Skalarprodukt von diesem Verbindungsvektor (mitsamt Parameter) mit dem ...
Abstand berechnen | V.03
Es gibt drei wichtige Abstände: 1.Abstand Punkt-Punkt, 2.Punkt-Gerade, 3.Abstand Punkt-Ebene. Die Entfernung von allem anderen führt man auf diese ersten drei zurück. (Ausnahme bilden zwei windschiefe Geraden. Man kann deren Abstand berechnen, in dem man entweder eine Formel anwendet oder die Lotfußpunkte bestimmt.)
Abstand Punkt Gerade berechnen über Lotebene | V.03.02
Einen Abstand Punkt-Gerade kann man über mehrere Wege berechnen. Eine der Möglichkeiten ist der Weg über die Lotebene. Für eine solche senkrechte Ebene verwendet man als Normalenvektor den Richtungsvektor der Geraden. Den Punkt verwendet man als Stützvektor für diese Hilfsebene.
Quelle
Systematik
Schlagwörter
- Lotfußpunkt (16)
- Abstand (11)
- Lotebene (8)
- Abstand Punkt zu Gerade (8)
- Abstand Punkt Gerade (8)
- Gerade-Kugel (4)
- Abstand von Punkt einer Geraden zu Punkt Berechnen (4)