Taylorpolynom; Taylorreihe; Taylorentwicklung, Beispiel 1 | A.32.01
kostenloses Unterrichtsmaterial online bei Elixier
Die Taylorentwicklung macht aus einer komplizierten und hässlichen Funktion ein einfaches Polynom, das Taylorpolynom, die Taylorreihe oder einfach nur Näherungspolynom. Natürlich hat das Ganze einen Haken. Um eine e-Funktion oder eine Sinus-Funktion oder etc.. in ein einfaches Polynom umzuwandeln, müsste dieses Polynom unendlich lang sein. Das will natürlich niemand, man verwendet von dieser Taylorreihe immer nur die ersten 2,3,4,5... Terme. Insofern hat man mit dem erhaltenen Polynom immer nur eine Annäherung an die ursprüngliche, hässliche Funktion, was aber meistens ausreicht. Auf diese Art kann man nach Taylor auch die Reihenentwicklung der Exponential-, der Sinus- oder Kosinusfunktion erhalten. Die Formel für die Taylorentwicklung ist zum Glück relativ einfach.