Geraden mit Parameter, Beispiel 3 | A.02.17
kostenloses Unterrichtsmaterial online bei Elixier
Wenn in einer Geradengleichung ein Parameter auftaucht (also zusätzlich zum x noch ein t oder k oder ), so spricht man von einer Geradenschar (man hat schließlich eine ganze Schar von Geraden). Jede einzelne Gerade nennt man Schargerade (eine Gerade aus dieser Schar). Die üblichen Fragen bei Geradenscharen sind Nullstellen (also y=0 setzen und nach x auflösen), irgendeine Punktprobe (man setzt also die Koordinaten von irgendeinem gegebenen Punkt ein und muss nach t auflösen), und ähnliches Zeug. Auch wenn es jetzt blöd klingt: wie bei allen Funktionenscharen begegnet man keinen anderen Fragestellungen, als bei den entsprechenden Funktionen oder Geraden ohne Parameter. Es wird nur eine Stufe hässlicher, weil man in jedem Rechenschritt diesen herrlichen, wundervollen und anmutigen Parameter mitschleppt. Und man muss die mathematischen Theorien sehr gut kennen. Man muss also GENAU wissen, wie man Schritt für Schritt vorgeht, um Nullstellen zu berechnen, Schnittpunkte zu berechnen, Punktproben durchführt, etc.. denn genau die gleiche Abfolge macht man nun auch mitsamt Parameter.