Asymptoten von komplizierten Exponentialfunktionen berechnen, Beispiel 3 | A.41.08kostenloses Unterrichtsmaterial online bei Elixier

Asymptoten von komplizierten Exponentialfunktionen berechnen, Beispiel 3 | A.41.08

kostenloses Unterrichtsmaterial online bei Elixier

Falls es sich bei der Funktion um einen Bruch handelt, muss man eventuell senkrechte Asymptoten in Betracht ziehen. Dieses geschieht indem man den Nenner Null setzt. Das Gleiche gilt, falls in der e-Funktion noch zusätzlich ein Logarithmus auftaucht. Das Argument des Logarithmus wird Null gesetzt, die Lösung ist wiederum eine senkrechte Asymptote. Grenzwerte, also waagerechte oder schiefe Asymptoten erhält man wie üblicherweise, indem man x gegen plus und minus Unendlich laufen lässt.

Logo
Zur Verfügung gestellt von: Bildungsmediathek NRW
Höchstalter: 15
Bildungsebene:Sekundarstufe I
Lernressourcentyp: Audiovisuelles Medium
Sprache: de
Mindestalter: 10
Kostenpflichtig: nein
Lizenz: CC by-nc-ND
Geeignet für: Schüler; Lehrer