Normale außerhalb, Beispiel 3 | A.15.05
kostenloses Unterrichtsmaterial online bei Elixier
Eine Normale von außen oder Normale von außerhalb liegt vor, wenn der Punkt in welchem die (orthogonale) Normale auf der Funktion steht NICHT gegeben ist. Dafür kennt man einen anderen Punkt, der auf der Normale liegt. Vorgehensweise: man verwendet die Normalenformel, setzt die Koordinaten dieses anderen Punktes für x und y ein und erhält nun eine Gleichung mit nur noch einer einzigen Unbekannten (u). Nun löst man die Gleichung nach u auf (welches der x-Wert des Berührpunktes ist). Jetzt hat man den Berührpunkt (oder mehrere) und kann ggf. in diesen Punkten wieder die Normale aufstellen.