vektoren - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

vektoren - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Lernarchiv Gentechnik (Vektoren, genome editing...)
Lernarchiv Gentechnik (Vektoren, genome editing...)
Flip the Classroom: Vektoren
In diesem Video von Flip the Classroom wird der Vektorbegriff, seine geometrischen Interpretationen und Rechenoperationen wie die Vektoraddition, die Vektorsubtraktion und die skalare Multiplikation sehr anschaulich und mit typischen Aufgaben erklärt.
Flip the Cassroom: Skalarprodukt, orthogonale Vektoren
In diesem Lernvideo von Flip the Classroom wird die Berechnung des Skalarproduktes vorgestellt und die Orthogonalitätsbedingung für Vektoren thematisiert. Anschließend werden typische Aufgaben berechnet.
Skalarprodukt: so kann man Vektoren multiplizieren | V.05.02
Will man zwei Vektoren multiplizieren, macht man das mit dem Skalarprodukt. Dafür multipliziert man die ersten beiden ersten Einträge der Vektoren, dann die beiden zweiten Einträge, und die dritten Einträge. Die drei Ergebnisse werden ADDIERT, das Ergebnis ist eine Zahl. Ist dieses Ergebnis Null, so stehen die beiden Vektoren senkrecht aufeinander. Das ist die wichtigste ...
Skalarprodukt: so kann man Vektoren multiplizieren. Beispiel 3 | V.05.02
Will man zwei Vektoren multiplizieren, macht man das mit dem Skalarprodukt. Dafür multipliziert man die ersten beiden ersten Einträge der Vektoren, dann die beiden zweiten Einträge, und die dritten Einträge. Die drei Ergebnisse werden ADDIERT, das Ergebnis ist eine Zahl. Ist dieses Ergebnis Null, so stehen die beiden Vektoren senkrecht aufeinander. Das ist die wichtigste ...
Kreuzprodukt (Mathematik)
Ein Kreuzprodukt ist die Verknüpfung zweier Vektoren, dessen Ergebnis wieder ein Vektor ist, der senkrecht auf den beiden Vektoren steht.
Skalarprodukt: so kann man Vektoren multiplizieren. Beispiel 2 | V.05.02
Will man zwei Vektoren multiplizieren, macht man das mit dem Skalarprodukt. Dafür multipliziert man die ersten beiden ersten Einträge der Vektoren, dann die beiden zweiten Einträge, und die dritten Einträge. Die drei Ergebnisse werden ADDIERT, das Ergebnis ist eine Zahl. Ist dieses Ergebnis Null, so stehen die beiden Vektoren senkrecht aufeinander. Das ist die wichtigste ...
Skalarprodukt: so kann man Vektoren multiplizieren. Beispiel 1 | V.05.02
Will man zwei Vektoren multiplizieren, macht man das mit dem Skalarprodukt. Dafür multipliziert man die ersten beiden ersten Einträge der Vektoren, dann die beiden zweiten Einträge, und die dritten Einträge. Die drei Ergebnisse werden ADDIERT, das Ergebnis ist eine Zahl. Ist dieses Ergebnis Null, so stehen die beiden Vektoren senkrecht aufeinander. Das ist die wichtigste ...
Teilverhältnis, Beispiel 2 | V.10.02
Die Frage nach linearer (Un)Abhängigkeit sieht man in der vektoriellen Geometrie sehr häufig. Die Definition lautet wie folgt: Gegeben sind beliebig viele Vektoren: A, B, C, und genau so viele Parameter a, b, c, Man betrachtet und löst nun das Gleichungssystem: a*A+b*B+c*C+...=0 Wenn für ALLE Parameter die Lösung a=0, b=0, c=0, rauskommt sind die Vektoren „linear ...
Skalarprodukt Beweise, Beispiel 2 | V.10.04
Die Frage nach linearer (Un)Abhängigkeit sieht man in der vektoriellen Geometrie sehr häufig. Die Definition lautet wie folgt: Gegeben sind beliebig viele Vektoren: A, B, C, und genau so viele Parameter a, b, c, Man betrachtet und löst nun das Gleichungssystem: a*A+b*B+c*C+...=0 Wenn für ALLE Parameter die Lösung a=0, b=0, c=0, rauskommt sind die Vektoren „linear ...