symmetrisch - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen
GRIPS Mathe - Symmetrie - GRIPS Mathe Lektion 25
Zum Thema Symmetrie hat sich Lehrer Basti Wohlrab ein ganz besonderes Klassenzimmer ausgesucht: ein Flugzeugmuseum, das voller Beispiele ist für Achsensymmetrie (Tragflächen), Drehsymmetrie (Propeller) und Punktsymmetrie (Flaggen). Die Schüler lernen, was eine Spiegelachse ist, aber auch, was nicht symmetrisch ist. An den Flugzeugen sind Flächen und Körper symmetrisch, ...
Schiefe - linksschief, rechtsschief, symmetrisch
Mit über 150 Artikeln und über 100 interaktiven Übungen gehört MatheGuru.com zu den umfangreichsten Mathematikseiten im deutschsprachigen Internet. Zahlreiche farbige Abbildungen visualisieren die einzelnen Sachverhalte und helfen beim Verständnis. Dieser Link erklärt, was der Begriff Schiefe in der Stochastik bedeutet.
Symmetrie von ganzrationalen Funktionen bestimmen, Beispiel 1 | A.17.01
Symmetrie von ganzrationalen Funktionen (Polynomen) erkennt man sehr einfach an den Hochzahlen: Gibt es nur gerade Hochzahlen, so ist die Funktion achsensymmetrisch zur y-Achse. Gibt es nur ungerade Hochzahlen, so ist f(x) punktsymmetrisch zum Ursprung. Gibt es gemischte Hochzahlen, so ist f(x) weder zum Ursprung, noch zur y-Achse symmetrisch.
Symmetrie von ganzrationalen Funktionen bestimmen, Beispiel 2 | A.17.01
Symmetrie von ganzrationalen Funktionen (Polynomen) erkennt man sehr einfach an den Hochzahlen: Gibt es nur gerade Hochzahlen, so ist die Funktion achsensymmetrisch zur y-Achse. Gibt es nur ungerade Hochzahlen, so ist f(x) punktsymmetrisch zum Ursprung. Gibt es gemischte Hochzahlen, so ist f(x) weder zum Ursprung, noch zur y-Achse symmetrisch.
Symmetrie von ganzrationalen Funktionen bestimmen, Beispiel 3 | A.17.01
Symmetrie von ganzrationalen Funktionen (Polynomen) erkennt man sehr einfach an den Hochzahlen: Gibt es nur gerade Hochzahlen, so ist die Funktion achsensymmetrisch zur y-Achse. Gibt es nur ungerade Hochzahlen, so ist f(x) punktsymmetrisch zum Ursprung. Gibt es gemischte Hochzahlen, so ist f(x) weder zum Ursprung, noch zur y-Achse symmetrisch.
Symmetrie von ganzrationalen Funktionen bestimmen | A.17.01
Symmetrie von ganzrationalen Funktionen (Polynomen) erkennt man sehr einfach an den Hochzahlen: Gibt es nur gerade Hochzahlen, so ist die Funktion achsensymmetrisch zur y-Achse. Gibt es nur ungerade Hochzahlen, so ist f(x) punktsymmetrisch zum Ursprung. Gibt es gemischte Hochzahlen, so ist f(x) weder zum Ursprung, noch zur y-Achse symmetrisch.
Kurvendiskussion Beispiel 3b: Funktion auf Symmetrie untersuchen | A.19.03
Wir führen eine Funktionsanalyse einer Funktion durch, die nicht symmetrisch ist. Besonderheit ist ein Berührpunkt mit der x-Achse (also eine doppelte Nullstelle). Desweiteren bestimmen wir die Wendenormale und die Funktion, die durch Spiegelung an der x-Achse entsteht. Zum Schluss bestimmen wir noch die Flächen zwischen: gespiegelte Funktion und f(x).
Kurvendiskussion Beispiel 3e: Wendepunkte berechnen | A.19.03
Wir führen eine Funktionsanalyse einer Funktion durch, die nicht symmetrisch ist. Besonderheit ist ein Berührpunkt mit der x-Achse (also eine doppelte Nullstelle). Desweiteren bestimmen wir die Wendenormale und die Funktion, die durch Spiegelung an der x-Achse entsteht. Zum Schluss bestimmen wir noch die Flächen zwischen: gespiegelte Funktion und f(x).
Quelle
- Bildungsmediathek NRW (15)
- Lehrer-Online (2)
- Deutscher Bildungsserver (1)
- Bildungsserver Hessen (1)
- Select Hessen (1)
Systematik
- Mathematik (20)
- Mathematisch-Naturwissenschaftliche Fächer (18)
- Geometrie (2)
- Fächerübergreifende Themen (2)
- Grundschule (2)
- Euklidische Geometrie Des Raumes (1)
- Kombinieren (1)
Schlagwörter
- Punktsymmetrie (14)
- Achsensymmetrie (14)
- Formel (Mathematik) (14)
- Gerade (Mathematik) (14)
- Funktion (Mathematik) (14)
- E-Learning (14)
- Analysis (14)