steigend - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

steigend - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Monotonie und Monotonieverhalten einer Funktion bestimmen, Beispiel 1 | A.11.07
Monotonie und Monotonieverhalten: Eine Funktion ist in einem bestimmten Intervall streng monoton steigend (bzw. streng monoton wachsend), wenn die erste Ableitung f´(x) überall positiv ist. Die Funktion ist streng monoton fallend (bzw. streng monoton abnehmend), wenn die Ableitung negativ ist. Falls es ein oder mehrere Punkte gibt, an denen die Funktion waagerecht verläuft ...
Monotonie und Monotonieverhalten einer Funktion bestimmen, Beispiel 3 | A.11.07
Monotonie und Monotonieverhalten: Eine Funktion ist in einem bestimmten Intervall streng monoton steigend (bzw. streng monoton wachsend), wenn die erste Ableitung f´(x) überall positiv ist. Die Funktion ist streng monoton fallend (bzw. streng monoton abnehmend), wenn die Ableitung negativ ist. Falls es ein oder mehrere Punkte gibt, an denen die Funktion waagerecht verläuft ...
Monotonie und Monotonieverhalten einer Funktion bestimmen | A.11.07
Monotonie und Monotonieverhalten: Eine Funktion ist in einem bestimmten Intervall streng monoton steigend (bzw. streng monoton wachsend), wenn die erste Ableitung f´(x) überall positiv ist. Die Funktion ist streng monoton fallend (bzw. streng monoton abnehmend), wenn die Ableitung negativ ist. Falls es ein oder mehrere Punkte gibt, an denen die Funktion waagerecht verläuft ...
Monotonie und Monotonieverhalten einer Funktion bestimmen, Beispiel 2 | A.11.07
Monotonie und Monotonieverhalten: Eine Funktion ist in einem bestimmten Intervall streng monoton steigend (bzw. streng monoton wachsend), wenn die erste Ableitung f´(x) überall positiv ist. Die Funktion ist streng monoton fallend (bzw. streng monoton abnehmend), wenn die Ableitung negativ ist. Falls es ein oder mehrere Punkte gibt, an denen die Funktion waagerecht verläuft ...
Monotonie und Monotonieverhalten einer Funktion bestimmen, Beispiel 4 | A.11.07
Monotonie und Monotonieverhalten: Eine Funktion ist in einem bestimmten Intervall streng monoton steigend (bzw. streng monoton wachsend), wenn die erste Ableitung f´(x) überall positiv ist. Die Funktion ist streng monoton fallend (bzw. streng monoton abnehmend), wenn die Ableitung negativ ist. Falls es ein oder mehrere Punkte gibt, an denen die Funktion waagerecht verläuft ...
Staatsverschuldung - unvermeidbar und gefährlich?
Deutschlands Staatsverschuldung beträgt derzeit über 1,7 Milliarden Euro Tendenz steigend. Wer soll das jemals bezahlen? Oder ist die staatliche Kreditaufnahme notwendig, um unseren Wohlstand zu sichern? (Themenblätter im Unterricht Nr. 82, 2010-20)
SignDict: Gebärdensprach - Wörterbuch
Allein bis 2017 sind im Online - Wörterbuch der Gebärdensprache rund 4100 Wörter in deutscher Gebärdensprache (DGS) dargestellt. Tendenz steigend - denn jeder darf bei der Erweiterung mitmachen. Gefördert wird das Projekt u.a. vom BMBF.
Wendestellen, Wendepunkte
Mit über 150 Artikeln und über 100 interaktiven Übungen gehört MatheGuru.com zu den umfangreichsten Mathematikseiten im deutschsprachigen Internet. Zahlreiche farbige Abbildungen visualisieren die einzelnen Sachverhalte und helfen beim Verständnis. Wie man eine Wendestelle definiert und wie man sie berechnet, erfahren Sie hier.
Themenblätter im Unterricht - Staatsverschuldung - unvermeidbar und gefährlich?
Deutschlands Staatsverschuldung beträgt derzeit über 1,7 Billionen Euro ? Tendenz steigend. Wer soll das jemals bezahlen? Oder ist die staatliche Kreditaufnahme notwendig, um unseren Wohlstand zu sichern?
Monotonie (Mathematik)
Eine reelle Funktion heißt monoton steigend (oder monoton wachsend), wenn für alle x,y aus der Definitionsmenge folgendes gilt...