steigend - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen
Monotonie und Monotonieverhalten einer Funktion bestimmen, Beispiel 1 | A.11.07
Monotonie und Monotonieverhalten: Eine Funktion ist in einem bestimmten Intervall streng monoton steigend (bzw. streng monoton wachsend), wenn die erste Ableitung f´(x) überall positiv ist. Die Funktion ist streng monoton fallend (bzw. streng monoton abnehmend), wenn die Ableitung negativ ist. Falls es ein oder mehrere Punkte gibt, an denen die Funktion waagerecht verläuft ...
Monotonie und Monotonieverhalten einer Funktion bestimmen, Beispiel 3 | A.11.07
Monotonie und Monotonieverhalten: Eine Funktion ist in einem bestimmten Intervall streng monoton steigend (bzw. streng monoton wachsend), wenn die erste Ableitung f´(x) überall positiv ist. Die Funktion ist streng monoton fallend (bzw. streng monoton abnehmend), wenn die Ableitung negativ ist. Falls es ein oder mehrere Punkte gibt, an denen die Funktion waagerecht verläuft ...
Monotonie und Monotonieverhalten einer Funktion bestimmen | A.11.07
Monotonie und Monotonieverhalten: Eine Funktion ist in einem bestimmten Intervall streng monoton steigend (bzw. streng monoton wachsend), wenn die erste Ableitung f´(x) überall positiv ist. Die Funktion ist streng monoton fallend (bzw. streng monoton abnehmend), wenn die Ableitung negativ ist. Falls es ein oder mehrere Punkte gibt, an denen die Funktion waagerecht verläuft ...
Monotonie und Monotonieverhalten einer Funktion bestimmen, Beispiel 2 | A.11.07
Monotonie und Monotonieverhalten: Eine Funktion ist in einem bestimmten Intervall streng monoton steigend (bzw. streng monoton wachsend), wenn die erste Ableitung f´(x) überall positiv ist. Die Funktion ist streng monoton fallend (bzw. streng monoton abnehmend), wenn die Ableitung negativ ist. Falls es ein oder mehrere Punkte gibt, an denen die Funktion waagerecht verläuft ...
Monotonie und Monotonieverhalten einer Funktion bestimmen, Beispiel 4 | A.11.07
Monotonie und Monotonieverhalten: Eine Funktion ist in einem bestimmten Intervall streng monoton steigend (bzw. streng monoton wachsend), wenn die erste Ableitung f´(x) überall positiv ist. Die Funktion ist streng monoton fallend (bzw. streng monoton abnehmend), wenn die Ableitung negativ ist. Falls es ein oder mehrere Punkte gibt, an denen die Funktion waagerecht verläuft ...
Wendestellen, Wendepunkte
Mit über 150 Artikeln und über 100 interaktiven Übungen gehört MatheGuru.com zu den umfangreichsten Mathematikseiten im deutschsprachigen Internet. Zahlreiche farbige Abbildungen visualisieren die einzelnen Sachverhalte und helfen beim Verständnis. Wie man eine Wendestelle definiert und wie man sie berechnet, erfahren Sie hier.
Quelle
- Bildungsmediathek NRW (6)
- Lehrer-Online (3)
- Deutscher Bildungsserver (2)
- Bildungsserver Hessen (2)
- Bundeszentrale für Politische Bildung (1)
Systematik
- Mathematisch-Naturwissenschaftliche Fächer (10)
- Mathematik (8)
- Sozialkundlich-Philosophische Fächer (3)
- Wirtschaftspolitik (2)
- Biologie (2)
- Politik (2)
- Grundschule (2)
Schlagwörter
- Analysis (6)
- Sattelpunkt (5)
- Monoton Fallend (5)
- Monoton Steigend (5)
- Monotonie (5)
- Tiefpunkt (5)
- Hochpunkt (5)
Bildungsebene
Lernressourcentyp
- Interaktives Material (1)
- Nachschlagewerk (1)
- Unterrichtsplanung (1)
- Arbeitsblatt (1)
- Arbeitsmaterial (1)