näherungsverfahren - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

näherungsverfahren - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Näherungsverfahren und Näherungslösungen | A.32
Sie werden es vielleicht nicht glauben, aber Mathematik kann man für die Praxis anwenden. Und da reichen meist Näherungslösungen. Es gibt Näherungslösungen um Gleichungen zu lösen (Newton-Verfahren, Intervallhalbierung), es gibt Näherungsverfahren um Flächen/Integrale zu berechnen (Keplersche Fassregel, Simpson-Formel) und man kann komplizierte Funktionen durch ...
Newtonverfahren: Erklärung und Beispiele
Auf dieser Seite von mathematik.de wird das Newton-Verfahren zur Bestimmung von Nullstellen einer Funktion gut und verständlich erklärt. Anschließend folgen wichtige Beispiele.
Wie gut ist das Newton-Verfahren?
Diese pdf-Datei von mathe-online.at beschreibt die Vorteile des Newton-Verfahrens gegenüber den anderen Verfahren zum Finden einer Nullstelle einer Funktion.
Mit Keplersche Fassregel Flächeninhalt bestimmen, Beispiel 3 | A.32.04
Es gibt Verfahren, um Flächeninhalte näherungsweise zu bestimmen. Eines dieser Näherungsverfahren ist die Keplersche Fassregel. Der Vorteil an der Keplerschen Fassregel ist der, dass sie recht einfach ist und recht akzeptable, also recht genaue Ergebnisse liefert. Der große Nachteil ist: man weiß nicht wie genau das erhaltene Ergebnis ist. Man weiß nicht, ob die ...
Mit Keplersche Fassregel Flächeninhalt bestimmen, Beispiel 1 | A.32.04
Es gibt Verfahren, um Flächeninhalte näherungsweise zu bestimmen. Eines dieser Näherungsverfahren ist die Keplersche Fassregel. Der Vorteil an der Keplerschen Fassregel ist der, dass sie recht einfach ist und recht akzeptable, also recht genaue Ergebnisse liefert. Der große Nachteil ist: man weiß nicht wie genau das erhaltene Ergebnis ist. Man weiß nicht, ob die ...
Mit Keplersche Fassregel Flächeninhalt bestimmen, Beispiel 2 | A.32.04
Es gibt Verfahren, um Flächeninhalte näherungsweise zu bestimmen. Eines dieser Näherungsverfahren ist die Keplersche Fassregel. Der Vorteil an der Keplerschen Fassregel ist der, dass sie recht einfach ist und recht akzeptable, also recht genaue Ergebnisse liefert. Der große Nachteil ist: man weiß nicht wie genau das erhaltene Ergebnis ist. Man weiß nicht, ob die ...
Mit Keplersche Fassregel Flächeninhalt bestimmen | A.32.04
Es gibt Verfahren, um Flächeninhalte näherungsweise zu bestimmen. Eines dieser Näherungsverfahren ist die Keplersche Fassregel. Der Vorteil an der Keplerschen Fassregel ist der, dass sie recht einfach ist und recht akzeptable, also recht genaue Ergebnisse liefert. Der große Nachteil ist: man weiß nicht wie genau das erhaltene Ergebnis ist. Man weiß nicht, ob die ...
Newtonsches Näherungsverfahren
Das Newtonsche Iterationsverfahren dient dazu Nullstellen von schwierigeren Funktionen anzunähern. Entwickelt wurde es für nicht lineare Funktionen (alles außer Geraden).
Mit Trapezregel Flächeninhalt bestimmen, Beispiel 2 | A.32.05
Die Sehnen-Trapez-Regel (oder Trapezregel)ist ein Verfahren, um Flächeninhalte näherungsweise zu bestimmen. Die Sehnen-Trapezformel liefert im Normalfall bessere Ergebnisse als die Keplerschen Fassregel (siehe Kap.2.12.4), dafür ist sie jedoch nicht so schnell und supereinfach. Trotzdem ist die Sehnentrapezregel nicht schwer zu verstehen. Eigentlich setzt man nur x- und ...
Mit Trapezregel Flächeninhalt bestimmen | A.32.05
Die Sehnen-Trapez-Regel (oder Trapezregel)ist ein Verfahren, um Flächeninhalte näherungsweise zu bestimmen. Die Sehnen-Trapezformel liefert im Normalfall bessere Ergebnisse als die Keplerschen Fassregel (siehe Kap.2.12.4), dafür ist sie jedoch nicht so schnell und supereinfach. Trotzdem ist die Sehnentrapezregel nicht schwer zu verstehen. Eigentlich setzt man nur x- und ...