lineare Funktion - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

lineare Funktion - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Mathe - Lineare Funktionen und lineare Gleichungen
Auf dem werbefinanzierten Portal findet man Erklärungen, Beispiele und Übungen zu linearen Funktionen und linearen Gleichungen.
Lineare Funktionen - die Funktionsmaschine
Mithilfe des mathematischen Modells der Funktionsmaschine machen die Schülerinnen und Schüler ihre erste Bekanntschaft mit dem Funktionsbegriff. Im weiteren Verlauf der Unterrichtseinheit wird die lineare Funktion als solche anschaulich und ausführlich mit vielen interaktiven Übungen untersucht.
Lernpfad: Lineare Funktion f: y=k·x+d
Übersicht Gleichung - Graph k und d Spurpunkte Konstruktion mit k und d mit Spurpunkten Aufgaben Graph - Gleichung Steigungsdreieck Spurpunkte Teste dich selbst! Ordne zu! Quiz 1 Quiz 2 Beweis Präsentation
Lineare Funktionen
Sammlung von interaktiven Übungen zum Thema "Lineare Funktionen".
Lineare Funktionen - grafische Darstellungen interaktiv erkunden
Die Schülerinnen und Schüler stellen Sachverhalte grafisch dar und interpretieren Graphen (Klasse 8-9).; Lernressourcentyp: Unterrichtsplanung; Lernmaterial; Arbeitsblatt (interaktiv); Arbeitsblatt (druckbar); Mindestalter: 10; Höchstalter: 14
Newtonsches Näherungsverfahren
Das Newtonsche Iterationsverfahren dient dazu Nullstellen von schwierigeren Funktionen anzunähern. Entwickelt wurde es für nicht lineare Funktionen (alles außer Geraden).
Lineare Funktionen - Unterrichtseinheit
Die Erarbeitung von Funktionsgleichungen aus zwei Punkten einer Geraden erfolgt mit Hilfe der kostenlosen Mathematiksoftware GeoGebra. Die Software bietet die Möglichkeit, einen direkten Zusammenhang zwischen Funktionsgleichung und Graphen der Funktion zu visualisieren. Material steht zum Download zur Verfügung.
Lineare, inhomogene Differentialgleichung DGL lösen, Beispiel 1 | A.53.03
Eine lineare inhomogene DGL hat die Form a·y'+b·y=c (a, b, c sind nicht zwingend Zahlen, sondern hängen von „x“ ab). Im ersten Schritt bestimmt man die Lösung der zugehörigen homogenen DGL (man setzt also c=0) (?Kap.4.3.2). Im zweiten Schritt ersetzt man die Integrationskonstante „c“ durch eine Funktion „c(x)“. Nun setzt man die gesamte Lösung (mitsamt c(x)) ...
Lineare, inhomogene Differentialgleichung DGL lösen | A.53.03
Eine lineare inhomogene DGL hat die Form a·y'+b·y=c (a, b, c sind nicht zwingend Zahlen, sondern hängen von „x“ ab). Im ersten Schritt bestimmt man die Lösung der zugehörigen homogenen DGL (man setzt also c=0) (?Kap.4.3.2). Im zweiten Schritt ersetzt man die Integrationskonstante „c“ durch eine Funktion „c(x)“. Nun setzt man die gesamte Lösung (mitsamt c(x)) ...