drei Punkte - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Koordinatenform in Parameterform umwandeln, Beispiel 1 | V.01.07
Will man eine Koordinatenform in Parameterform umwandeln, sucht man sich drei Punkte der Ebene (z.B. die Spurpunkte) und stellt aus diesen drei Punkten die Parameterform auf. (wie in Kap.V.01.05)
Koordinatenform in Parameterform umwandeln, Beispiel 3 | V.01.07
Will man eine Koordinatenform in Parameterform umwandeln, sucht man sich drei Punkte der Ebene (z.B. die Spurpunkte) und stellt aus diesen drei Punkten die Parameterform auf. (wie in Kap.V.01.05)
Koordinatenform in Parameterform umwandeln, Beispiel 5 | V.01.07
Will man eine Koordinatenform in Parameterform umwandeln, sucht man sich drei Punkte der Ebene (z.B. die Spurpunkte) und stellt aus diesen drei Punkten die Parameterform auf. (wie in Kap.V.01.05)
Koordinatenform in Parameterform umwandeln | V.01.07
Will man eine Koordinatenform in Parameterform umwandeln, sucht man sich drei Punkte der Ebene (z.B. die Spurpunkte) und stellt aus diesen drei Punkten die Parameterform auf. (wie in Kap.V.01.05)
Koordinatenform in Parameterform umwandeln, Beispiel 4 | V.01.07
Will man eine Koordinatenform in Parameterform umwandeln, sucht man sich drei Punkte der Ebene (z.B. die Spurpunkte) und stellt aus diesen drei Punkten die Parameterform auf. (wie in Kap.V.01.05)
Koordinatenform in Parameterform umwandeln, Beispiel 2 | V.01.07
Will man eine Koordinatenform in Parameterform umwandeln, sucht man sich drei Punkte der Ebene (z.B. die Spurpunkte) und stellt aus diesen drei Punkten die Parameterform auf. (wie in Kap.V.01.05)
Steckbriefaufgaben zu Parabel mit drei Punkten, Beispiel 1 | A.04.17
Hat man von einer beliebigen Parabel drei Punkte gegeben und muss die Parabelgleichung bestimmt (man nennt solche Aufgaben auch „Steckbriefaufgabe“), so beginnt man mit dem Ansatz y=ax²+bx+c und setzt man die Koordinaten aller drei Punkte ein. Für jeden Punkt erhält man eine Gleichung. (Oft erhält man aus einer Gleichung schon direkt „c“). Die erhaltenen Gleichungen ...
Steckbriefaufgaben zu Parabel mit drei Punkten, Beispiel 3 | A.04.17
Hat man von einer beliebigen Parabel drei Punkte gegeben und muss die Parabelgleichung bestimmt (man nennt solche Aufgaben auch „Steckbriefaufgabe“), so beginnt man mit dem Ansatz y=ax²+bx+c und setzt man die Koordinaten aller drei Punkte ein. Für jeden Punkt erhält man eine Gleichung. (Oft erhält man aus einer Gleichung schon direkt „c“). Die erhaltenen Gleichungen ...
Steckbriefaufgaben zu Parabel mit drei Punkten | A.04.17
Hat man von einer beliebigen Parabel drei Punkte gegeben und muss die Parabelgleichung bestimmt (man nennt solche Aufgaben auch „Steckbriefaufgabe“), so beginnt man mit dem Ansatz y=ax²+bx+c und setzt man die Koordinaten aller drei Punkte ein. Für jeden Punkt erhält man eine Gleichung. (Oft erhält man aus einer Gleichung schon direkt „c“). Die erhaltenen Gleichungen ...
Steckbriefaufgaben zu Parabel mit drei Punkten, Beispiel 2 | A.04.17
Hat man von einer beliebigen Parabel drei Punkte gegeben und muss die Parabelgleichung bestimmt (man nennt solche Aufgaben auch „Steckbriefaufgabe“), so beginnt man mit dem Ansatz y=ax²+bx+c und setzt man die Koordinaten aller drei Punkte ein. Für jeden Punkt erhält man eine Gleichung. (Oft erhält man aus einer Gleichung schon direkt „c“). Die erhaltenen Gleichungen ...