deckfläche - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen
Prisma berechnen: Prisma-Volumen, Höhe, Deckfläche, schiefes Prisma; Beispiel 2 | T.06.03
Ein Prisma ist ein Körper, der unten und oben zwei parallele Flächen hat. Die Flächen müssen allerdings komplett gleich sein. So gesehen sind recht viele Körper Prismen (z.B. Zylinder, Würfel, Quader). Das Praktische an einem Prisma ist die Berechnung des Volumens. Das Volumen jedes Prismas berechnet man über Grundfläche mal Höhe. (Wie man die Grundfläche ist ein ...
Prisma berechnen: Prisma-Volumen, Höhe, Deckfläche, schiefes Prisma | T.06.03
Ein Prisma ist ein Körper, der unten und oben zwei parallele Flächen hat. Die Flächen müssen allerdings komplett gleich sein. So gesehen sind recht viele Körper Prismen (z.B. Zylinder, Würfel, Quader). Das Praktische an einem Prisma ist die Berechnung des Volumens. Das Volumen jedes Prismas berechnet man über Grundfläche mal Höhe. (Wie man die Grundfläche ist ein ...
Prisma berechnen: Prisma-Volumen, Höhe, Deckfläche, schiefes Prisma; Beispiel 3 | T.06.03
Ein Prisma ist ein Körper, der unten und oben zwei parallele Flächen hat. Die Flächen müssen allerdings komplett gleich sein. So gesehen sind recht viele Körper Prismen (z.B. Zylinder, Würfel, Quader). Das Praktische an einem Prisma ist die Berechnung des Volumens. Das Volumen jedes Prismas berechnet man über Grundfläche mal Höhe. (Wie man die Grundfläche ist ein ...
Prisma berechnen: Prisma-Volumen, Höhe, Deckfläche, schiefes Prisma; Beispiel 1 | T.06.03
Ein Prisma ist ein Körper, der unten und oben zwei parallele Flächen hat. Die Flächen müssen allerdings komplett gleich sein. So gesehen sind recht viele Körper Prismen (z.B. Zylinder, Würfel, Quader). Das Praktische an einem Prisma ist die Berechnung des Volumens. Das Volumen jedes Prismas berechnet man über Grundfläche mal Höhe. (Wie man die Grundfläche ist ein ...
Zylinder berechnen: Zylindervolumen, Zylinderoberfläche, Mantelfläche | T.06.09
Ein Zylinder hat einen Kreis als Grundfläche und einen als Deckfläche. Wie jedes Prisma berechnet man das Volumen über Grundfläche mal Höhe. Die Oberfläche besteht aus zwei Kreisen und einer Mantelfläche, welche ein Rechteck ist. V=pi*r²*h, O=2*pi*r*(r+h)
Zylinder berechnen: Zylindervolumen, Zylinderoberfläche, Mantelfläche; Beispiel 2 | T.06.09
Ein Zylinder hat einen Kreis als Grundfläche und einen als Deckfläche. Wie jedes Prisma berechnet man das Volumen über Grundfläche mal Höhe. Die Oberfläche besteht aus zwei Kreisen und einer Mantelfläche, welche ein Rechteck ist. V=pi*r²*h, O=2*pi*r*(r+h)
Zylinder berechnen: Zylindervolumen, Zylinderoberfläche, Mantelfläche; Beispiel 1 | T.06.09
Ein Zylinder hat einen Kreis als Grundfläche und einen als Deckfläche. Wie jedes Prisma berechnet man das Volumen über Grundfläche mal Höhe. Die Oberfläche besteht aus zwei Kreisen und einer Mantelfläche, welche ein Rechteck ist. V=pi*r²*h, O=2*pi*r*(r+h)
Quelle
Systematik
- Mathematik (11)
- Mathematisch-Naturwissenschaftliche Fächer (10)
- Grundschule (3)
- Fachdidaktik (2)
- Zahlen (2)
- Fächerübergreifende Themen (2)
- Geometrie (1)
Schlagwörter
- Mantelfläche (6)
- Deckfläche (6)
- Zylinder (6)
- Prisma Berechnen (4)
- Schiefes Prisma (4)
- Prisma-Volumen (4)
- Zylindervolumen (4)