außerhalb einer Kugel - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen
Abstand Punkt-Kugel berechnen, Beispiel 1 | V.06.11
Abstand Punkt-Kugel: Endlich mal was Einfaches. Man berechnet eigentlich nur den Abstand vom Punkt zum Kugelmittelpunkt. Nun vergleicht man das Ergebnis mit dem Kugelradius. Ist der Abstand kleiner als der Radius, muss der Punkt innerhalb einer Kugel liegen. Ist der Abstand größer als der Radius, liegt ein Punkt außerhalb einer Kugel. Den Abstand zur Kugel ist die Differenz ...
Abstand Punkt-Kugel berechnen, Beispiel 2 | V.06.11
Abstand Punkt-Kugel: Endlich mal was Einfaches. Man berechnet eigentlich nur den Abstand vom Punkt zum Kugelmittelpunkt. Nun vergleicht man das Ergebnis mit dem Kugelradius. Ist der Abstand kleiner als der Radius, muss der Punkt innerhalb einer Kugel liegen. Ist der Abstand größer als der Radius, liegt ein Punkt außerhalb einer Kugel. Den Abstand zur Kugel ist die Differenz ...
Abstand Punkt-Kugel berechnen | V.06.11
Abstand Punkt-Kugel: Endlich mal was Einfaches. Man berechnet eigentlich nur den Abstand vom Punkt zum Kugelmittelpunkt. Nun vergleicht man das Ergebnis mit dem Kugelradius. Ist der Abstand kleiner als der Radius, muss der Punkt innerhalb einer Kugel liegen. Ist der Abstand größer als der Radius, liegt ein Punkt außerhalb einer Kugel. Den Abstand zur Kugel ist die Differenz ...
Abstand Punkt-Kugel berechnen, Beispiel 3 | V.06.11
Abstand Punkt-Kugel: Endlich mal was Einfaches. Man berechnet eigentlich nur den Abstand vom Punkt zum Kugelmittelpunkt. Nun vergleicht man das Ergebnis mit dem Kugelradius. Ist der Abstand kleiner als der Radius, muss der Punkt innerhalb einer Kugel liegen. Ist der Abstand größer als der Radius, liegt ein Punkt außerhalb einer Kugel. Den Abstand zur Kugel ist die Differenz ...
Tangentialkegel wenn Tangenten an Kugel, Beispiel 3 | V.06.16
Legt man von einem Punkt außerhalb einer Kugel Tangenten an diese Kugel, so erhält man unendlich viele Tangenten, die zusammen einen (unendlich großen) Tangentialkegel bilden. Der Kegel wird endlich, wenn man den Punkt als Spitze des Kegels betrachten und den Berührkreis der Tangenten an die Kugel als Grundkreis des Kegels. Normalerweise ist nun nach Volumen, Oberfläche ...
Tangentialkegel wenn Tangenten an Kugel | V.06.16
Legt man von einem Punkt außerhalb einer Kugel Tangenten an diese Kugel, so erhält man unendlich viele Tangenten, die zusammen einen (unendlich großen) Tangentialkegel bilden. Der Kegel wird endlich, wenn man den Punkt als Spitze des Kegels betrachten und den Berührkreis der Tangenten an die Kugel als Grundkreis des Kegels. Normalerweise ist nun nach Volumen, Oberfläche ...
Tangentialkegel wenn Tangenten an Kugel, Beispiel 2 | V.06.16
Legt man von einem Punkt außerhalb einer Kugel Tangenten an diese Kugel, so erhält man unendlich viele Tangenten, die zusammen einen (unendlich großen) Tangentialkegel bilden. Der Kegel wird endlich, wenn man den Punkt als Spitze des Kegels betrachten und den Berührkreis der Tangenten an die Kugel als Grundkreis des Kegels. Normalerweise ist nun nach Volumen, Oberfläche ...
Tangentialkegel wenn Tangenten an Kugel, Beispiel 1 | V.06.16
Legt man von einem Punkt außerhalb einer Kugel Tangenten an diese Kugel, so erhält man unendlich viele Tangenten, die zusammen einen (unendlich großen) Tangentialkegel bilden. Der Kegel wird endlich, wenn man den Punkt als Spitze des Kegels betrachten und den Berührkreis der Tangenten an die Kugel als Grundkreis des Kegels. Normalerweise ist nun nach Volumen, Oberfläche ...
Polarebene, Beispiel 2 | V.06.17
Legt man von einem Punkt P, der außerhalb einer Kugel liegt, Tangenten an die Kugel, so bilden alle Berührpunkte einen Kreis, einen Berührkreis. Dieser Kreis liegt in einer Ebene, welche Polarebene heißt. Um eine Gleichung davon zu bestimmen, verwendet man am besten die Formel für die Tangentialgleichung. Da setzt man Mittelpunkt und den Punkt P ein und erhält eine ...
Polarebene, Beispiel 1 | V.06.17
Legt man von einem Punkt P, der außerhalb einer Kugel liegt, Tangenten an die Kugel, so bilden alle Berührpunkte einen Kreis, einen Berührkreis. Dieser Kreis liegt in einer Ebene, welche Polarebene heißt. Um eine Gleichung davon zu bestimmen, verwendet man am besten die Formel für die Tangentialgleichung. Da setzt man Mittelpunkt und den Punkt P ein und erhält eine ...
Quelle
Systematik
Schlagwörter
- Berührkreis (8)
- Außerhalb vom Kreis (4)
- Punkt Innerhalb Eines Kreises (4)
- Abstand Punkt Kreis (4)
- Tangenten (4)
- Polarebene (4)
- Öffnungswinkel (4)