Zufallsvariable - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Erwartungswert berechnen, Beispiel 3 | Wahrscheinlichkeitsrechnung Formeln W.15.06
Ein Erwartungswert ist ein Mittelwert oder ein Durchschnitt (von irgendwelchen Zahlen, die man hier Zufallsvariable nennt). Man berechnet den Erwartungswert, indem man jedes mögliche auftretende Ereignis mit dessen Wahrscheinlichkeit multipliziert und dann alles addiert.
Erwartungswert berechnen, Beispiel 1 | Wahrscheinlichkeitsrechnung Formeln W.15.06
Ein Erwartungswert ist ein Mittelwert oder ein Durchschnitt (von irgendwelchen Zahlen, die man hier Zufallsvariable nennt). Man berechnet den Erwartungswert, indem man jedes mögliche auftretende Ereignis mit dessen Wahrscheinlichkeit multipliziert und dann alles addiert.
Erwartungswert berechnen, Beispiel 2 | Wahrscheinlichkeitsrechnung Formeln W.15.06
Ein Erwartungswert ist ein Mittelwert oder ein Durchschnitt (von irgendwelchen Zahlen, die man hier Zufallsvariable nennt). Man berechnet den Erwartungswert, indem man jedes mögliche auftretende Ereignis mit dessen Wahrscheinlichkeit multipliziert und dann alles addiert.
Erwartungswert | Wahrscheinlichkeitsrechnung Formeln W.15.06
Ein Erwartungswert ist ein Mittelwert oder ein Durchschnitt (von irgendwelchen Zahlen, die man hier Zufallsvariable nennt). Man berechnet den Erwartungswert, indem man jedes mögliche auftretende Ereignis mit dessen Wahrscheinlichkeit multipliziert und dann alles addiert.
Wahrscheinlichkeitsrechnung und Statistik 2
Auf dieser Seite von mathe-online.at werden sehr ausführlich u. a. die folgenden Begriffe erklärt: Mittelwert, empirische Varianz und empirische Standardabweichung, diskrete Zufallsvariable, Erwartungswert und Binomialverteilung.
Poission-Verteilung
Mit über 150 Artikeln und über 100 interaktiven Übungen gehört MatheGuru.com zu den umfangreichsten Mathematikseiten im deutschsprachigen Internet. Zahlreiche farbige Abbildungen visualisieren die einzelnen Sachverhalte und helfen beim Verständnis. Wo und wie die Poisson-Verteilung angesetzt wird, erfahren Sie hier.
Bernoulli Experiment
Ein Bernoulli-Experiment ist ein Zufallsexperiment mit genau zwei möglichen Versuchsausgängen. Für ein Bernoulli-Experiment wird eine Bernoulli-verteilte Zufallsvariable X betrachtet.
Zufallsgröße
Eine Zufallsgröße, auch Zufallsvariable genannt, ist eine Funktion, die den Elementen einer Ergebnismenge eines Zufallsexperimentes reelle Zahlen zuordnet.Üblicherweise werden Zufallsgrößen mit X, Z oder G notiert.