Zinseszinsrechnung - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Zinseszinsrechnung - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Zinseszins - Erklärung und Formelsammlung
Auf dem werbefinanzierten Portal finden Sie Erklärungen sowie eine Formelsammlung mit Übungen und Lösungen zum Thema Zinseszins.
Zinseszinsrechnung: so rechnet man Zinseszins richtig | A.55.01
Die Zinseszinsrechnung kennt man bereits von der Prozentrechnung aus der Mittelstufe (siehe auch Kap.A.08). Man wendet sie an, wenn anfangs ein Kapital vorhanden ist und dieses nun über mehrere Jahre/Monate/Tage/... verzinst wird. (Zwischendrin wird also nichts mehr ein- oder ausbezahlt). Die Formel lautet: K(n)=K(0)*q^n. Hierbei ist K(n) das Endkapital, K(0) das ...
Zinseszinsrechnung: so rechnet man Zinseszins richtig, Beispiel 1 | A.55.01
Die Zinseszinsrechnung kennt man bereits von der Prozentrechnung aus der Mittelstufe (siehe auch Kap.A.08). Man wendet sie an, wenn anfangs ein Kapital vorhanden ist und dieses nun über mehrere Jahre/Monate/Tage/... verzinst wird. (Zwischendrin wird also nichts mehr ein- oder ausbezahlt). Die Formel lautet: K(n)=K(0)*q^n. Hierbei ist K(n) das Endkapital, K(0) das ...
Zinseszinsrechnung: so rechnet man Zinseszins richtig, Beispiel 3 | A.55.01
Die Zinseszinsrechnung kennt man bereits von der Prozentrechnung aus der Mittelstufe (siehe auch Kap.A.08). Man wendet sie an, wenn anfangs ein Kapital vorhanden ist und dieses nun über mehrere Jahre/Monate/Tage/... verzinst wird. (Zwischendrin wird also nichts mehr ein- oder ausbezahlt). Die Formel lautet: K(n)=K(0)*q^n. Hierbei ist K(n) das Endkapital, K(0) das ...
Zinseszinsrechnung: so rechnet man Zinseszins richtig, Beispiel 2 | A.55.01
Die Zinseszinsrechnung kennt man bereits von der Prozentrechnung aus der Mittelstufe (siehe auch Kap.A.08). Man wendet sie an, wenn anfangs ein Kapital vorhanden ist und dieses nun über mehrere Jahre/Monate/Tage/... verzinst wird. (Zwischendrin wird also nichts mehr ein- oder ausbezahlt). Die Formel lautet: K(n)=K(0)*q^n. Hierbei ist K(n) das Endkapital, K(0) das ...
Annuitätenrechnung und Tilgungsrechnung: so berechnet man Annuitäten richtig, Beispiel 2 | A.55.03
Nimmt man einen Kredit auf, den man natürlich tilgen will, setzt sich das aus einer Zinseszinsrechnung und einer Rentenrechnung zusammen. Die Formel für die Berechnung des Endkapitals lautet: K(n)=K(0)*q^n–R*(q^n-1)/(q-1). K(n) ist das Endkapital, K(0) der anfängliche Kredit, R die regelmäßige Rate (=Annuität) und für q gilt q=1+p/100. (Bemerkung: Die Formel ist auch ...
Annuitätenrechnung und Tilgungsrechnung: so berechnet man Annuitäten richtig, Beispiel 1 | A.55.03
Nimmt man einen Kredit auf, den man natürlich tilgen will, setzt sich das aus einer Zinseszinsrechnung und einer Rentenrechnung zusammen. Die Formel für die Berechnung des Endkapitals lautet: K(n)=K(0)*q^n–R*(q^n-1)/(q-1). K(n) ist das Endkapital, K(0) der anfängliche Kredit, R die regelmäßige Rate (=Annuität) und für q gilt q=1+p/100. (Bemerkung: Die Formel ist auch ...
Annuitätenrechnung und Tilgungsrechnung: so berechnet man Annuitäten richtig, Beispiel 3 | A.55.03
Nimmt man einen Kredit auf, den man natürlich tilgen will, setzt sich das aus einer Zinseszinsrechnung und einer Rentenrechnung zusammen. Die Formel für die Berechnung des Endkapitals lautet: K(n)=K(0)*q^n–R*(q^n-1)/(q-1). K(n) ist das Endkapital, K(0) der anfängliche Kredit, R die regelmäßige Rate (=Annuität) und für q gilt q=1+p/100. (Bemerkung: Die Formel ist auch ...
Annuitätenrechnung und Tilgungsrechnung: so berechnet man Annuitäten richtig | A.55.03
Nimmt man einen Kredit auf, den man natürlich tilgen will, setzt sich das aus einer Zinseszinsrechnung und einer Rentenrechnung zusammen. Die Formel für die Berechnung des Endkapitals lautet: K(n)=K(0)*q^n–R*(q^n-1)/(q-1). K(n) ist das Endkapital, K(0) der anfängliche Kredit, R die regelmäßige Rate (=Annuität) und für q gilt q=1+p/100. (Bemerkung: Die Formel ist auch ...
CompuLearn Mathematik
Der Mathematiktrainer CompuLearn bietet über 4900 Aufgaben zu den Themen Bruchrechnung, Prozent- und Zinsrechnung, Terme, Lineare und Quadratische Funktionen, Wurzel- und Potenzrechnung, Logarithmen und Trigonometrie. Zusätzlich sind vielfältige Aufgaben zur Geometrie enthalten. Im Internet steht eine Probeversion zur Verfügung, mit der man bereits üben kann. Die volle ...