Zielfunktion - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen
So löst man Extremwertaufgaben | A.21.01
Meist kann man folgendermaßen vorgehen: man schaut, was überhaupt maximal werden muss (z.B. könnte das eine Dreiecksfläche sein). Die Formel für diese Größe sucht man aus der Formelsammlung raus (z.B. bei der Dreiecksfläche: A=½·g·h). Nun ist das große Ziel, in dieser Formel nur noch EINE Unbekannte drin zu haben. Wie erreicht man das? Man hat immer noch eine ...
Simplex-Algorithmus | M.08.02
Tauchen in der Linearen Optimierung mehr als drei Unbekannte auf, so ist das Problem nur noch rechnerisch lösbar. Dazu braucht man einen Algorithmus (d.h. eine längere Abfolge von Regeln) den man unbedingt lernen muss (geht nicht intuitiv). Dieser Algorithmus heißt Simplex-Algorithmus. Wie geht man im Detail vor? Zuerst erstellt man die Ungleichungen aus der gegebenen ...
Simplex-Algorithmus, Beispiel 2 | M.08.02
Tauchen in der Linearen Optimierung mehr als drei Unbekannte auf, so ist das Problem nur noch rechnerisch lösbar. Dazu braucht man einen Algorithmus (d.h. eine längere Abfolge von Regeln) den man unbedingt lernen muss (geht nicht intuitiv). Dieser Algorithmus heißt Simplex-Algorithmus. Wie geht man im Detail vor? Zuerst erstellt man die Ungleichungen aus der gegebenen ...
Simplex-Algorithmus, Beispiel 1 | M.08.02
Tauchen in der Linearen Optimierung mehr als drei Unbekannte auf, so ist das Problem nur noch rechnerisch lösbar. Dazu braucht man einen Algorithmus (d.h. eine längere Abfolge von Regeln) den man unbedingt lernen muss (geht nicht intuitiv). Dieser Algorithmus heißt Simplex-Algorithmus. Wie geht man im Detail vor? Zuerst erstellt man die Ungleichungen aus der gegebenen ...
Extremwertaufgaben, schwierige Übungen, Beispiel 4 | A.21.09
Leider gehören viele der Extremwertaufgaben nicht zu den letztgenannten Standardfällen. Viele der Extremwertaufgaben sind immer wieder neue, hässliche Typen. Hier ein Versuch ein paar davon vorzurechnen. In den Beispielen geht es um die Fläche von einem beliebigen Dreieck, Fläche vom Trapez und zwei senkrechten Geraden die aus einer Fläche einen Streifen ...
Extremwertaufgaben, schwierige Übungen, Beispiel 6 | A.21.09
Leider gehören viele der Extremwertaufgaben nicht zu den letztgenannten Standardfällen. Viele der Extremwertaufgaben sind immer wieder neue, hässliche Typen. Hier ein Versuch ein paar davon vorzurechnen. In den Beispielen geht es um die Fläche von einem beliebigen Dreieck, Fläche vom Trapez und zwei senkrechten Geraden die aus einer Fläche einen Streifen ...
Extremwertaufgaben, schwierige Übungen, Beispiel 5 | A.21.09
Leider gehören viele der Extremwertaufgaben nicht zu den letztgenannten Standardfällen. Viele der Extremwertaufgaben sind immer wieder neue, hässliche Typen. Hier ein Versuch ein paar davon vorzurechnen. In den Beispielen geht es um die Fläche von einem beliebigen Dreieck, Fläche vom Trapez und zwei senkrechten Geraden die aus einer Fläche einen Streifen ...
Extremwertaufgaben, schwierige Übungen, Beispiel 2 | A.21.09
Leider gehören viele der Extremwertaufgaben nicht zu den letztgenannten Standardfällen. Viele der Extremwertaufgaben sind immer wieder neue, hässliche Typen. Hier ein Versuch ein paar davon vorzurechnen. In den Beispielen geht es um die Fläche von einem beliebigen Dreieck, Fläche vom Trapez und zwei senkrechten Geraden die aus einer Fläche einen Streifen ...
Simplex grafisch lösen, Beispiel 1 | M.08.01
Hat man in der Linearen Optimierung nur zwei Unbekannte, darf man das Problem meistens grafisch lösen. Zuerst muss man die Ungleichungen aus der Aufgabenstellung herauslesen (falls sie nicht bereits gegeben sind). Dann zeichnet man alle Ungleichungen ein (sie werden ähnlich wie Geraden gezeichnet). Nun hat man immer ein Vieleck (heißt Planungsvieleck) (bedenken Sie, dass ...
Simplex grafisch lösen | M.08.01
Hat man in der Linearen Optimierung nur zwei Unbekannte, darf man das Problem meistens grafisch lösen. Zuerst muss man die Ungleichungen aus der Aufgabenstellung herauslesen (falls sie nicht bereits gegeben sind). Dann zeichnet man alle Ungleichungen ein (sie werden ähnlich wie Geraden gezeichnet). Nun hat man immer ein Vieleck (heißt Planungsvieleck) (bedenken Sie, dass ...
Quelle
Systematik
Schlagwörter
- Lineare Optimierung (6)
- Zielfunktion (5)
- Extremwert (5)
- Geometrische Figur (5)
- Funktion (Mathematik) (5)
- Koordinate (5)
- Analysis (5)