Winkel berechnen - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen
Winkel und Anstiegswinkel von Geraden berechnen, Beispiel 1 | A.02.15
Es gibt nur zwei Formeln, um Winkel zu berechnen. Die etwas hässlichere Formel finden Sie im nächsten Kapitel. Die einfachere Formel lautet m=tan(alpha). Hierbei ist m die Steigung der Geraden und alpha immer der Winkel zwischen dieser Geraden und der x-Achse (oder einer anderen waagerechten Gerade). Diesen Winkel nennt man auch Anstiegswinkel. Will man den ...
Winkel und Anstiegswinkel von Geraden berechnen, Beispiel 5 | A.02.15
Es gibt nur zwei Formeln, um Winkel zu berechnen. Die etwas hässlichere Formel finden Sie im nächsten Kapitel. Die einfachere Formel lautet m=tan(alpha). Hierbei ist m die Steigung der Geraden und alpha immer der Winkel zwischen dieser Geraden und der x-Achse (oder einer anderen waagerechten Gerade). Diesen Winkel nennt man auch Anstiegswinkel. Will man den ...
Winkel und Anstiegswinkel von Geraden berechnen, Beispiel 2 | A.02.15
Es gibt nur zwei Formeln, um Winkel zu berechnen. Die etwas hässlichere Formel finden Sie im nächsten Kapitel. Die einfachere Formel lautet m=tan(alpha). Hierbei ist m die Steigung der Geraden und alpha immer der Winkel zwischen dieser Geraden und der x-Achse (oder einer anderen waagerechten Gerade). Diesen Winkel nennt man auch Anstiegswinkel. Will man den ...
Winkel und Anstiegswinkel von Geraden berechnen, Beispiel 6 | A.02.15
Es gibt nur zwei Formeln, um Winkel zu berechnen. Die etwas hässlichere Formel finden Sie im nächsten Kapitel. Die einfachere Formel lautet m=tan(alpha). Hierbei ist m die Steigung der Geraden und alpha immer der Winkel zwischen dieser Geraden und der x-Achse (oder einer anderen waagerechten Gerade). Diesen Winkel nennt man auch Anstiegswinkel. Will man den ...
Winkel und Anstiegswinkel von Geraden berechnen | A.02.15
Es gibt nur zwei Formeln, um Winkel zu berechnen. Die etwas hässlichere Formel finden Sie im nächsten Kapitel. Die einfachere Formel lautet m=tan(alpha). Hierbei ist m die Steigung der Geraden und alpha immer der Winkel zwischen dieser Geraden und der x-Achse (oder einer anderen waagerechten Gerade). Diesen Winkel nennt man auch Anstiegswinkel. Will man den ...
Winkel und Anstiegswinkel von Geraden berechnen, Beispiel 3 | A.02.15
Es gibt nur zwei Formeln, um Winkel zu berechnen. Die etwas hässlichere Formel finden Sie im nächsten Kapitel. Die einfachere Formel lautet m=tan(alpha). Hierbei ist m die Steigung der Geraden und alpha immer der Winkel zwischen dieser Geraden und der x-Achse (oder einer anderen waagerechten Gerade). Diesen Winkel nennt man auch Anstiegswinkel. Will man den ...
Winkel und Anstiegswinkel von Geraden berechnen, Beispiel 4 | A.02.15
Es gibt nur zwei Formeln, um Winkel zu berechnen. Die etwas hässlichere Formel finden Sie im nächsten Kapitel. Die einfachere Formel lautet m=tan(alpha). Hierbei ist m die Steigung der Geraden und alpha immer der Winkel zwischen dieser Geraden und der x-Achse (oder einer anderen waagerechten Gerade). Diesen Winkel nennt man auch Anstiegswinkel. Will man den ...
Glücksrad Wahrscheinlichkeit berechnen, Beispiel 2 | W.14.03
Ein Glücksrad ist ein Rad, das in mehrere sogenannte Sektoren aufgeteilt ist. Wenn die Sektoren nicht gleich groß sind, ist meist der Winkel jedes Sektors gegeben, über welchen man die Wahrscheinlichkeit berechnen kann, mit welcher der Sektor auftritt.
Glücksrad Wahrscheinlichkeit berechnen, Beispiel 1 | W.14.03
Ein Glücksrad ist ein Rad, das in mehrere sogenannte Sektoren aufgeteilt ist. Wenn die Sektoren nicht gleich groß sind, ist meist der Winkel jedes Sektors gegeben, über welchen man die Wahrscheinlichkeit berechnen kann, mit welcher der Sektor auftritt.
Glücksrad Wahrscheinlichkeit berechnen | W.14.03
Ein Glücksrad ist ein Rad, das in mehrere sogenannte Sektoren aufgeteilt ist. Wenn die Sektoren nicht gleich groß sind, ist meist der Winkel jedes Sektors gegeben, über welchen man die Wahrscheinlichkeit berechnen kann, mit welcher der Sektor auftritt.
Quelle
- Bildungsmediathek NRW (58)
- Lehrer-Online (5)
- Handwerk macht Schule (3)
- Bildungsserver Hessen (3)
- Landesbildungsserver Berlin-Brandenburg (1)
- Deutscher Bildungsserver (1)
Systematik
- Mathematik (71)
- Mathematisch-Naturwissenschaftliche Fächer (71)
- Fächerübergreifende Themen (8)
- Zahlen (8)
- Fachdidaktik (8)
- Grundschule (8)
- Analytische Geometrie (2)
Schlagwörter
- Winkel (56)
- Geometrie (39)
- Video (35)
- E-Learning (34)
- Schnittwinkel (33)
- Steigung (25)
- Winkelfunktion (22)
Bildungsebene
Lernressourcentyp
- Unterrichtsplanung (5)
- Arbeitsmaterial (3)
- Video/animation (2)
- Interaktives Material (1)
- Arbeitsblatt (1)