Volumen berechnen - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Volumen berechnen - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Lernvideo von Hilfreich-TV: Volumen eines Kegels berechnen
In diesem Lernvideo von HilfreichTV wird erklärt, wie man das Volumen eines Kegels berechnet.
Lernvideo von Hilfreich-TV: Volumen eines Kegels berechnen
In diesem Lernvideo von HilfreichTV wird erklärt, wie man das Volumen eines Kegels berechnet.
Volumen des Quaders berechnen - Lernen in 3D
In diesem Lernvideo von echteinfach.tv lernen die Schüler sehr anschaulich durch 3-D-Visualisierungen, wie man das Volumen eines Quaders bestimmt und was man sich unter einem bestimmten Volumen vorstellen kann.
Quader berechnen: Quader-Oberfläche, Quader-Volumen, Quader-Raumdiagonale | T.06.02
Ein Quader ist im Prinzip eine Schachtel. Oder blöd gesagt: eine Art Würfel, nur dass die Seitenlängen alle unterschiedlich sein können. Wir führen hier ein paar Berechnungen zu Oberfläche, zum Rauminhalt (Volumen) und zur Raumdiagonale durch.
Zylinder berechnen: Zylindervolumen, Zylinderoberfläche, Mantelfläche; Beispiel 2 | T.06.09
Ein Zylinder hat einen Kreis als Grundfläche und einen als Deckfläche. Wie jedes Prisma berechnet man das Volumen über Grundfläche mal Höhe. Die Oberfläche besteht aus zwei Kreisen und einer Mantelfläche, welche ein Rechteck ist. V=pi*r²*h, O=2*pi*r*(r+h)
Quader berechnen: Quader-Oberfläche, Quader-Volumen, Quader-Raumdiagonale; Beispiel 2 | T.06.02
Ein Quader ist im Prinzip eine Schachtel. Oder blöd gesagt: eine Art Würfel, nur dass die Seitenlängen alle unterschiedlich sein können. Wir führen hier ein paar Berechnungen zu Oberfläche, zum Rauminhalt (Volumen) und zur Raumdiagonale durch.
Quader berechnen: Quader-Oberfläche, Quader-Volumen, Quader-Raumdiagonale; Beispiel 3 | T.06.02
Ein Quader ist im Prinzip eine Schachtel. Oder blöd gesagt: eine Art Würfel, nur dass die Seitenlängen alle unterschiedlich sein können. Wir führen hier ein paar Berechnungen zu Oberfläche, zum Rauminhalt (Volumen) und zur Raumdiagonale durch.
Zylinder berechnen: Zylindervolumen, Zylinderoberfläche, Mantelfläche; Beispiel 1 | T.06.09
Ein Zylinder hat einen Kreis als Grundfläche und einen als Deckfläche. Wie jedes Prisma berechnet man das Volumen über Grundfläche mal Höhe. Die Oberfläche besteht aus zwei Kreisen und einer Mantelfläche, welche ein Rechteck ist. V=pi*r²*h, O=2*pi*r*(r+h)
Quader berechnen: Quader-Oberfläche, Quader-Volumen, Quader-Raumdiagonale; Beispiel 1 | T.06.02
Ein Quader ist im Prinzip eine Schachtel. Oder blöd gesagt: eine Art Würfel, nur dass die Seitenlängen alle unterschiedlich sein können. Wir führen hier ein paar Berechnungen zu Oberfläche, zum Rauminhalt (Volumen) und zur Raumdiagonale durch.
Zylinder berechnen: Zylindervolumen, Zylinderoberfläche, Mantelfläche | T.06.09
Ein Zylinder hat einen Kreis als Grundfläche und einen als Deckfläche. Wie jedes Prisma berechnet man das Volumen über Grundfläche mal Höhe. Die Oberfläche besteht aus zwei Kreisen und einer Mantelfläche, welche ein Rechteck ist. V=pi*r²*h, O=2*pi*r*(r+h)