Vertauschungsmöglichkeiten - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen
Kombinatorik Beispiele: wie man vertauschen und kombinieren kann, Beispiel 4 | W.12.01
Es gibt für fast jeden Typ von Vertauschungsmöglichkeiten eine Formel. Es gibt Kombinationen, Permutationen, Fakultäten, Binomialkoeffizienten, und vieles mehr. Manchmal hilft auch einfach Nachdenken. Für einige Vertauschungsmöglichkeiten gibt gute Vorgehensweisen, ohne irgendwelche Formeln. Hier sind ein paar Beispiele dazu.
Kombinatorik Beispiele: wie man vertauschen und kombinieren kann, Beispiel 1 | W.12.01
Es gibt für fast jeden Typ von Vertauschungsmöglichkeiten eine Formel. Es gibt Kombinationen, Permutationen, Fakultäten, Binomialkoeffizienten, und vieles mehr. Manchmal hilft auch einfach Nachdenken. Für einige Vertauschungsmöglichkeiten gibt gute Vorgehensweisen, ohne irgendwelche Formeln. Hier sind ein paar Beispiele dazu.
Kombinatorik Beispiele: wie man vertauschen und kombinieren kann | W.12.01
Es gibt für fast jeden Typ von Vertauschungsmöglichkeiten eine Formel. Es gibt Kombinationen, Permutationen, Fakultäten, Binomialkoeffizienten, und vieles mehr. Manchmal hilft auch einfach Nachdenken. Für einige Vertauschungsmöglichkeiten gibt gute Vorgehensweisen, ohne irgendwelche Formeln. Hier sind ein paar Beispiele dazu.
Kombinatorik Beispiele: wie man vertauschen und kombinieren kann, Beispiel 3 | W.12.01
Es gibt für fast jeden Typ von Vertauschungsmöglichkeiten eine Formel. Es gibt Kombinationen, Permutationen, Fakultäten, Binomialkoeffizienten, und vieles mehr. Manchmal hilft auch einfach Nachdenken. Für einige Vertauschungsmöglichkeiten gibt gute Vorgehensweisen, ohne irgendwelche Formeln. Hier sind ein paar Beispiele dazu.
Kombinatorik Beispiele: wie man vertauschen und kombinieren kann, Beispiel 2 | W.12.01
Es gibt für fast jeden Typ von Vertauschungsmöglichkeiten eine Formel. Es gibt Kombinationen, Permutationen, Fakultäten, Binomialkoeffizienten, und vieles mehr. Manchmal hilft auch einfach Nachdenken. Für einige Vertauschungsmöglichkeiten gibt gute Vorgehensweisen, ohne irgendwelche Formeln. Hier sind ein paar Beispiele dazu.
Binomialverteilung Bernoulli-Formel mit Binomialkoeffizient, Beispiel 1 | W.16.01
Die Formel für die Binomialverteilung heißt auch Bernoulli-Formel und setzt sich aus drei Teilen zusammen. Zum einen der Binomialkoeffizient (der die Vertauschungsmöglichkeiten angibt), die W.S. der ersten Möglichkeit hoch der Anzahl davon, sowie die W.S. der zweiten Möglichkeit hoch der Anzahl davon. Als Formel: Sei n die Gesamtanzahl aller Züge, k sei die Anzahl ...
Binomialverteilung Bernoulli-Formel mit Binomialkoeffizient, Beispiel 4 | W.16.01
Die Formel für die Binomialverteilung heißt auch Bernoulli-Formel und setzt sich aus drei Teilen zusammen. Zum einen der Binomialkoeffizient (der die Vertauschungsmöglichkeiten angibt), die W.S. der ersten Möglichkeit hoch der Anzahl davon, sowie die W.S. der zweiten Möglichkeit hoch der Anzahl davon. Als Formel: Sei n die Gesamtanzahl aller Züge, k sei die Anzahl ...
Binomialverteilung Bernoulli-Formel mit Binomialkoeffizient | W.16.01
Die Formel für die Binomialverteilung heißt auch Bernoulli-Formel und setzt sich aus drei Teilen zusammen. Zum einen der Binomialkoeffizient (der die Vertauschungsmöglichkeiten angibt), die W.S. der ersten Möglichkeit hoch der Anzahl davon, sowie die W.S. der zweiten Möglichkeit hoch der Anzahl davon. Als Formel: Sei n die Gesamtanzahl aller Züge, k sei die Anzahl ...
Binomialkoeffizient: was das ist und wie man damit rechnet, Beispiel 1 | W.12.02
Eine der wirklich wichtigen Vertauschungsmöglichkeiten ist der Binomialkoeffizient (bzw. auch Binominalkoeffizient). Es wird angewendet, falls es nur zwei Auswahlmöglichkeiten gibt (z.B. nur rote Kugeln oder nichtrote Kugeln) und falls die Frage so ähnlich formuliert werden kann, wie: Wieviel Möglichkeiten gibt es, diese beiden Kugelsorten hintereinander ...
Binomialkoeffizient: was das ist und wie man damit rechnet, Beispiel 3 | W.12.02
Eine der wirklich wichtigen Vertauschungsmöglichkeiten ist der Binomialkoeffizient (bzw. auch Binominalkoeffizient). Es wird angewendet, falls es nur zwei Auswahlmöglichkeiten gibt (z.B. nur rote Kugeln oder nichtrote Kugeln) und falls die Frage so ähnlich formuliert werden kann, wie: Wieviel Möglichkeiten gibt es, diese beiden Kugelsorten hintereinander ...
Quelle
Systematik
Schlagwörter
- Binomialkoeffizient (9)
- Fakultäten (5)
- Vertauschungsmöglichkeiten (5)
- Permutationen (5)
- Binomialverteilung Formel (5)
- Bernoulli-Formel (5)
- Kombinationen (5)