Verbindungsvektor - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Verbindungsvektor - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Schwerpunkt Dreieck, Mittelpunkt Strecke, Verbindungsvektor berechnen, Beispiel 1 | V.01.02
Den Mittelpunkt einer Strecke bestimmt man, in dem man die Endpunkte der Strecke zusammenzählt und durch 2 teilt. Den Schwerpunkt eines Dreiecks bestimmt man, in dem man die Koordinaten der Eckpunkte zusammenzählt und durch 3 teilt. Den Verbindungsvektor von einem Punkt zu einem zweiten Punkt stellt man auf, in dem man die Koordinaten des Anfangspunkt vom Endpunkt ...
Schwerpunkt Dreieck, Mittelpunkt Strecke, Verbindungsvektor berechnen | V.01.02
Den Mittelpunkt einer Strecke bestimmt man, in dem man die Endpunkte der Strecke zusammenzählt und durch 2 teilt. Den Schwerpunkt eines Dreiecks bestimmt man, in dem man die Koordinaten der Eckpunkte zusammenzählt und durch 3 teilt. Den Verbindungsvektor von einem Punkt zu einem zweiten Punkt stellt man auf, in dem man die Koordinaten des Anfangspunkt vom Endpunkt ...
Schwerpunkt Dreieck, Mittelpunkt Strecke, Verbindungsvektor berechnen, Beispiel 2 | V.01.02
Den Mittelpunkt einer Strecke bestimmt man, in dem man die Endpunkte der Strecke zusammenzählt und durch 2 teilt. Den Schwerpunkt eines Dreiecks bestimmt man, in dem man die Koordinaten der Eckpunkte zusammenzählt und durch 3 teilt. Den Verbindungsvektor von einem Punkt zu einem zweiten Punkt stellt man auf, in dem man die Koordinaten des Anfangspunkt vom Endpunkt ...
Abstand Punkt Gerade berechnen über laufenden Punkt, Beispiel 2 | V.03.03
Den Abstand Punkt-Gerade kann man auf mehrere Arten berechnen. Eine der Möglichkeiten ist der Weg über den laufenden Punkt (oder auch fliegenden Punkt wie es heißt). Man schreibt die Gerade dafür in Punktform um, stellt einen Verbindungsvektor von diesem laufenden Punkt zum Ausgangspunkt auf. Das Skalarprodukt von diesem Verbindungsvektor (mitsamt Parameter) mit dem ...
Abstand windschiefer Geraden berechnen über Lotfußpunkt, Beispiel 2 | V.03.10
Für windschiefe Geraden, gibt es zwei Möglichkeiten der Abstandsberechnung. (Der einfachste Weg geht wohl über die Formel, dieser Wege liefert allerdings die Lotfußpunkte nicht.) Beide windschiefe Geraden schreibt man in Punktform um, (man bestimmt also einen laufenden Punkt für beide Geraden), zieht diese Lotfußpunkte voneinander ab, um den Verbindungsvektor zu erhalten ...
Abstand windschiefer Geraden berechnen über Lotfußpunkt, Beispiel 3 | V.03.10
Für windschiefe Geraden, gibt es zwei Möglichkeiten der Abstandsberechnung. (Der einfachste Weg geht wohl über die Formel, dieser Wege liefert allerdings die Lotfußpunkte nicht.) Beide windschiefe Geraden schreibt man in Punktform um, (man bestimmt also einen laufenden Punkt für beide Geraden), zieht diese Lotfußpunkte voneinander ab, um den Verbindungsvektor zu erhalten ...
Abstand Punkt Gerade berechnen über laufenden Punkt | V.03.03
Den Abstand Punkt-Gerade kann man auf mehrere Arten berechnen. Eine der Möglichkeiten ist der Weg über den laufenden Punkt (oder auch fliegenden Punkt wie es heißt). Man schreibt die Gerade dafür in Punktform um, stellt einen Verbindungsvektor von diesem laufenden Punkt zum Ausgangspunkt auf. Das Skalarprodukt von diesem Verbindungsvektor (mitsamt Parameter) mit dem ...
Abstand windschiefer Geraden berechnen über Lotfußpunkt, Beispiel 1 | V.03.10
Für windschiefe Geraden, gibt es zwei Möglichkeiten der Abstandsberechnung. (Der einfachste Weg geht wohl über die Formel, dieser Wege liefert allerdings die Lotfußpunkte nicht.) Beide windschiefe Geraden schreibt man in Punktform um, (man bestimmt also einen laufenden Punkt für beide Geraden), zieht diese Lotfußpunkte voneinander ab, um den Verbindungsvektor zu erhalten ...
Abstand windschiefer Geraden berechnen über Lotfußpunkt | V.03.10
Für windschiefe Geraden, gibt es zwei Möglichkeiten der Abstandsberechnung. (Der einfachste Weg geht wohl über die Formel, dieser Wege liefert allerdings die Lotfußpunkte nicht.) Beide windschiefe Geraden schreibt man in Punktform um, (man bestimmt also einen laufenden Punkt für beide Geraden), zieht diese Lotfußpunkte voneinander ab, um den Verbindungsvektor zu erhalten ...
Abstand Punkt Gerade berechnen über laufenden Punkt, Beispiel 3 | V.03.03
Den Abstand Punkt-Gerade kann man auf mehrere Arten berechnen. Eine der Möglichkeiten ist der Weg über den laufenden Punkt (oder auch fliegenden Punkt wie es heißt). Man schreibt die Gerade dafür in Punktform um, stellt einen Verbindungsvektor von diesem laufenden Punkt zum Ausgangspunkt auf. Das Skalarprodukt von diesem Verbindungsvektor (mitsamt Parameter) mit dem ...