Vektorgeometrie - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Vektorgeometrie - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Vektorgeometrie Grundlagen: Punkte, Geraden, Ebenen und mehr | V.01
Allgemeine Grundlagen der Vektorgeometrie rund um Punkte, Geraden und Ebenen. Geraden und Ebenen aufstellen, Ebenenformen umwandeln, etc..
Lineare (Un)abhängigkeit (Mathematik)
Lineare Abhängigkeit bzw. Unabhängigkeit sind Begriffe aus der Vektorgeometrie.
Grundlagen Vektorgeometrie: Punkte einzeichnen und ablesen im Koordinatensystem | V01.01
Im Allgemeinen kann man aus einem dreiachsigen Koordinatensystem keine Punkte ablesen. Es gibt ein paar Ausnahmen, die wir hier behandeln. Desweiteren werden wir auch noch Punkte, Geraden, Pyramiden Quader und Anderes einzeichnen.
Pyramide: was ist eine Pyramide im mathematischen Sinne? | V.07
Sämtliche Theorien der Vektorgeometrie fließen in Aufgaben zu Pyramiden ein. Eine Aufgabe zu einer Pyramide ist also so eine Art Anwendungsaufgabe in der Vektorgeometrie.
Grundlagen Vektorgeometrie: Punkte einzeichnen und ablesen im Koordinatensystem, Beispiel 3 | V01.01
Im Allgemeinen kann man aus einem dreiachsigen Koordinatensystem keine Punkte ablesen. Es gibt ein paar Ausnahmen, die wir hier behandeln. Desweiteren werden wir auch noch Punkte, Geraden, Pyramiden Quader und Anderes einzeichnen.
Grundlagen Vektorgeometrie: Punkte einzeichnen und ablesen im Koordinatensystem, Beispiel 1 | V01.01
Im Allgemeinen kann man aus einem dreiachsigen Koordinatensystem keine Punkte ablesen. Es gibt ein paar Ausnahmen, die wir hier behandeln. Desweiteren werden wir auch noch Punkte, Geraden, Pyramiden Quader und Anderes einzeichnen.
Grundlagen Vektorgeometrie: Punkte einzeichnen und ablesen im Koordinatensystem, Beispiel 2 | V01.01
Im Allgemeinen kann man aus einem dreiachsigen Koordinatensystem keine Punkte ablesen. Es gibt ein paar Ausnahmen, die wir hier behandeln. Desweiteren werden wir auch noch Punkte, Geraden, Pyramiden Quader und Anderes einzeichnen.
Analytische Geometrie (Vektoren)
Vektorgeometrie (auch „analytische Geometrie“ genannt) befasst sich mit linearen Berechnungen in Räumen (meist im dreidimensionalen Raum). Die Objekte, mit denen man rechnet sind Punkte, Geraden, Ebenen, Kugeln. Diese untersucht man auf gemeinsame Punkte (Schnittpunkte) und berechnet Abstände. Das macht eigentlich schon 80% der Vektorgeometrie in der Schule aus. Eine ...
Vektorgeometrie: Anwendungsaufgaben mit Rechenbeispielen | V.09
Es gibt die ein- oder andere Anwendung der Vektorgeometrie, die in der Schule und im Studium regelmäßig angewendet werden: „Pyramiden“ (siehe Kap.V.07), „Flugzeugaufgaben“ (sie heißen auch „U-Boot-Aufgaben“ oder sonstwie) und „Projektionen“ ( „Schattenaufgaben“, wo immer ein Lichtstrahl rumfliegt und irgendwo hinfällt)
Einführung in die Vektorgeometrie
Die Schülerinnen und Schüler erarbeiten sich selbstständig mit Hilfe von einem YouTube-Video die Grundlagen der analytischen Geometrie und vertiefen diese Kenntnisse nach dem Konzept "Flip the Classroom" anhand von verschiedenen Aufgabentypen mit unterschiedlichen Schwierigkeitsgraden.