Varianz - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Varianz - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Erwartungswert und Varianz bei der Binomialverteilung berechnen, Beispiel 1 | W.16.02
Erwartungswert, Varianz und Standardabweichung lässt sich bei der Binomialverteilung sehr, sehr einfach berechnen: E(x)=n*p, Var=n*p*(1-p) und die Standardabweichung ist wie immer die Wurzel aus der Varianz.
Erwartungswert und Varianz bei der Binomialverteilung berechnen, Beispiel 2 | W.16.02
Erwartungswert, Varianz und Standardabweichung lässt sich bei der Binomialverteilung sehr, sehr einfach berechnen: E(x)=n*p, Var=n*p*(1-p) und die Standardabweichung ist wie immer die Wurzel aus der Varianz.
Erwartungswert und Varianz bei der Binomialverteilung berechnen | W.16.02
Erwartungswert, Varianz und Standardabweichung lässt sich bei der Binomialverteilung sehr, sehr einfach berechnen: E(x)=n*p, Var=n*p*(1-p) und die Standardabweichung ist wie immer die Wurzel aus der Varianz.
Erwartungswert und Varianz bei der Binomialverteilung berechnen, Beispiel 3 | W.16.02
Erwartungswert, Varianz und Standardabweichung lässt sich bei der Binomialverteilung sehr, sehr einfach berechnen: E(x)=n*p, Var=n*p*(1-p) und die Standardabweichung ist wie immer die Wurzel aus der Varianz.
Erwartungswert und Varianz bei der Binomialverteilung berechnen, Beispiel 4 | W.16.02
Erwartungswert, Varianz und Standardabweichung lässt sich bei der Binomialverteilung sehr, sehr einfach berechnen: E(x)=n*p, Var=n*p*(1-p) und die Standardabweichung ist wie immer die Wurzel aus der Varianz.
Varianz (Mathematik)
Die Varianz ist ein Maß für die Abweichung einer Zufallsvariablen X von ihrem Erwartungswert in der Stochastik.
Varianz, Standardabweichung, Erwartungswert und wie man richtig damit rechnet; Beispiel 2 | W.11.05
Es gibt interessanterweise nur zwei Größen, die man braucht um eine recht gute Prognose für fast alle zufälligen Verteilungen des Universums anzugeben. Zum einen den Durchschnittswert ( = Erwartungswert ), zum anderen die Standardabweichung ( = Streuung ). Die Varianz ist eigentlich nur das Quadrat der Standardabweichung und braucht man im Prinzip eigentlich nie. (Beim ...
Varianz, Standardabweichung, Erwartungswert und wie man richtig damit rechnet | W.11.05
Es gibt interessanterweise nur zwei Größen, die man braucht um eine recht gute Prognose für fast alle zufälligen Verteilungen des Universums anzugeben. Zum einen den Durchschnittswert ( = Erwartungswert ), zum anderen die Standardabweichung ( = Streuung ). Die Varianz ist eigentlich nur das Quadrat der Standardabweichung und braucht man im Prinzip eigentlich nie. (Beim ...
Varianz, Standardabweichung, Erwartungswert und wie man richtig damit rechnet; Beispiel 1 | W.11.05
Es gibt interessanterweise nur zwei Größen, die man braucht um eine recht gute Prognose für fast alle zufälligen Verteilungen des Universums anzugeben. Zum einen den Durchschnittswert ( = Erwartungswert ), zum anderen die Standardabweichung ( = Streuung ). Die Varianz ist eigentlich nur das Quadrat der Standardabweichung und braucht man im Prinzip eigentlich nie. (Beim ...
Varianz, Standardabweichung, Erwartungswert und wie man richtig damit rechnet; Beispiel 3 | W.11.05
Es gibt interessanterweise nur zwei Größen, die man braucht um eine recht gute Prognose für fast alle zufälligen Verteilungen des Universums anzugeben. Zum einen den Durchschnittswert ( = Erwartungswert ), zum anderen die Standardabweichung ( = Streuung ). Die Varianz ist eigentlich nur das Quadrat der Standardabweichung und braucht man im Prinzip eigentlich nie. (Beim ...